1
|
Pompili V, Mazzocchi E, Moglia A, Acquadro A, Comino C, Rotino GL, Lanteri S. Structural and expression analysis of polyphenol oxidases potentially involved in globe artichoke (C. cardunculus var. scolymus L.) tissue browning. Sci Rep 2023; 13:12288. [PMID: 37516733 PMCID: PMC10387078 DOI: 10.1038/s41598-023-38874-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/16/2023] [Indexed: 07/31/2023] Open
Abstract
Globe artichoke capitula are susceptible to browning due to oxidation of phenols caused by the activity of polyphenol oxidases (PPOs), this reduces their suitability for fresh or processed uses. A genome-wide analysis of the globe artichoke PPO gene family was performed. Bioinformatics analyses identified eleven PPOs and their genomic and amino acidic features were annotated. Cis-acting element analysis identified a gene regulatory and functional profile associated to plant growth and development as well as stress response. For some PPOs, phylogenetic analyses revealed a structural and functional conservation with different Asteraceae PPOs, while the allelic variants of the eleven PPOs investigated across four globe artichoke varietal types identified several SNP/Indel variants, some of which having impact on gene translation. By RTqPCR were assessed the expression patterns of PPOs in plant tissues and in vitro calli characterized by different morphologies. Heterogeneous PPO expression profiles were observed and three of them (PPO6, 7 and 11) showed a significant increase of transcripts in capitula tissues after cutting. Analogously, the same three PPOs were significantly up-regulated in calli showing a brown phenotype due to oxidation of phenols. Our results lay the foundations for a future application of gene editing aimed at disabling the three PPOs putatively involved in capitula browning.
Collapse
Affiliation(s)
- Valerio Pompili
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy.
| | - Elena Mazzocchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Andrea Moglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Alberto Acquadro
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Cinzia Comino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | | | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy.
| |
Collapse
|
2
|
Soliman M, Podio M, Marconi G, Di Marsico M, Ortiz JPA, Albertini E, Delgado L. Differential Epigenetic Marks Are Associated with Apospory Expressivity in Diploid Hybrids of Paspalum rufum. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040793. [PMID: 33920644 PMCID: PMC8072704 DOI: 10.3390/plants10040793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Apomixis seems to emerge from the deregulation of preexisting genes involved in sexuality by genetic and/or epigenetic mechanisms. The trait is associated with polyploidy, but diploid individuals of Paspalum rufum can form aposporous embryo sacs and develop clonal seeds. Moreover, diploid hybrid families presented a wide apospory expressivity variation. To locate methylation changes associated with apomixis expressivity, we compare relative DNA methylation levels, at CG, CHG, and CHH contexts, between full-sib P. rufum diploid genotypes presenting differential apospory expressivity. The survey was performed using a methylation content-sensitive enzyme ddRAD (MCSeEd) strategy on samples at premeiosis/meiosis and postmeiosis stages. Based on the relative methylation level, principal component analysis and heatmaps, clearly discriminate samples with contrasting apospory expressivity. Differential methylated contigs (DMCs) showed 14% of homology to known transcripts of Paspalum notatum reproductive transcriptome, and almost half of them were also differentially expressed between apomictic and sexual samples. DMCs showed homologies to genes involved in flower growth, development, and apomixis. Moreover, a high proportion of DMCs aligned on genomic regions associated with apomixis in Setaria italica. Several stage-specific differential methylated sequences were identified as associated with apospory expressivity, which could guide future functional gene characterization in relation to apomixis success at diploid and tetraploid levels.
Collapse
Affiliation(s)
- Mariano Soliman
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| | - Maricel Podio
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| | - Gianpiero Marconi
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Marco Di Marsico
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Juan Pablo A. Ortiz
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| | - Emidio Albertini
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Luciana Delgado
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| |
Collapse
|
3
|
Grzybkowska D, Nowak K, Gaj MD. Hypermethylation of Auxin-Responsive Motifs in the Promoters of the Transcription Factor Genes Accompanies the Somatic Embryogenesis Induction in Arabidopsis. Int J Mol Sci 2020; 21:E6849. [PMID: 32961931 PMCID: PMC7555384 DOI: 10.3390/ijms21186849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
The auxin-induced embryogenic reprogramming of plant somatic cells is associated with extensive modulation of the gene expression in which epigenetic modifications, including DNA methylation, seem to play a crucial role. However, the function of DNA methylation, including the role of auxin in epigenetic regulation of the SE-controlling genes, remains poorly understood. Hence, in the present study, we analysed the expression and methylation of the TF genes that play a critical regulatory role during SE induction (LEC1, LEC2, BBM, WUS and AGL15) in auxin-treated explants of Arabidopsis. The results showed that auxin treatment substantially affected both the expression and methylation patterns of the SE-involved TF genes in a concentration-dependent manner. The auxin treatment differentially modulated the methylation of the promoter (P) and gene body (GB) sequences of the SE-involved genes. Relevantly, the SE-effective auxin treatment (5.0 µM of 2,4-D) was associated with the stable hypermethylation of the P regions of the SE-involved genes and a significantly higher methylation of the P than the GB fragments was a characteristic feature of the embryogenic culture. The presence of auxin-responsive (AuxRE) motifs in the hypermethylated P regions suggests that auxin might substantially contribute to the DNA methylation-mediated control of the SE-involved genes.
Collapse
Affiliation(s)
| | | | - Małgorzata D. Gaj
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (D.G.); (K.N.)
| |
Collapse
|