1
|
Marino A, Augello E, Stracquadanio S, Bellanca CM, Cosentino F, Spampinato S, Cantarella G, Bernardini R, Stefani S, Cacopardo B, Nunnari G. Unveiling the Secrets of Acinetobacter baumannii: Resistance, Current Treatments, and Future Innovations. Int J Mol Sci 2024; 25:6814. [PMID: 38999924 PMCID: PMC11241693 DOI: 10.3390/ijms25136814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Acinetobacter baumannii represents a significant concern in nosocomial settings, particularly in critically ill patients who are forced to remain in hospital for extended periods. The challenge of managing and preventing this organism is further compounded by its increasing ability to develop resistance due to its extraordinary genomic plasticity, particularly in response to adverse environmental conditions. Its recognition as a significant public health risk has provided a significant impetus for the identification of new therapeutic approaches and infection control strategies. Indeed, currently used antimicrobial agents are gradually losing their efficacy, neutralized by newer and newer mechanisms of bacterial resistance, especially to carbapenem antibiotics. A deep understanding of the underlying molecular mechanisms is urgently needed to shed light on the properties that allow A. baumannii enormous resilience against standard therapies. Among the most promising alternatives under investigation are the combination sulbactam/durlobactam, cefepime/zidebactam, imipenem/funobactam, xeruborbactam, and the newest molecules such as novel polymyxins or zosurabalpin. Furthermore, the potential of phage therapy, as well as deep learning and artificial intelligence, offer a complementary approach that could be particularly useful in cases where traditional strategies fail. The fight against A. baumannii is not confined to the microcosm of microbiological research or hospital wards; instead, it is a broader public health dilemma that demands a coordinated, global response.
Collapse
Affiliation(s)
- Andrea Marino
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Egle Augello
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Federica Cosentino
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Serena Spampinato
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Bruno Cacopardo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| |
Collapse
|
2
|
Gao S, Jin W, Quan Y, Li Y, Shen Y, Yuan S, Yi L, Wang Y, Wang Y. Bacterial capsules: Occurrence, mechanism, and function. NPJ Biofilms Microbiomes 2024; 10:21. [PMID: 38480745 PMCID: PMC10937973 DOI: 10.1038/s41522-024-00497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
In environments characterized by extended multi-stress conditions, pathogens develop a variety of immune escape mechanisms to enhance their ability to infect the host. The capsules, polymers that bacteria secrete near their cell wall, participates in numerous bacterial life processes and plays a crucial role in resisting host immune attacks and adapting to their niche. Here, we discuss the relationship between capsules and bacterial virulence, summarizing the molecular mechanisms of capsular regulation and pathogenesis to provide new insights into the research on the pathogenesis of pathogenic bacteria.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
3
|
Tu Q, Pu M, Li Y, Wang Y, Li M, Song L, Li M, An X, Fan H, Tong Y. Acinetobacter Baumannii Phages: Past, Present and Future. Viruses 2023; 15:v15030673. [PMID: 36992382 PMCID: PMC10057898 DOI: 10.3390/v15030673] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the most common clinical pathogens and a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant A. baumannii infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we described the different drug resistances of A. baumannii and some basic properties of A. baumannii phages, analyzed the interaction between phages and their hosts, and focused on A. baumannii phage therapies. Finally, we discussed the chance and challenge of phage therapy. This paper aims to provide a more comprehensive understanding of A. baumannii phages and theoretical support for the clinical application of A. baumannii phages.
Collapse
Affiliation(s)
- Qihang Tu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| |
Collapse
|
4
|
Unveil the Secret of the Bacteria and Phage Arms Race. Int J Mol Sci 2023; 24:ijms24054363. [PMID: 36901793 PMCID: PMC10002423 DOI: 10.3390/ijms24054363] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Bacteria have developed different mechanisms to defend against phages, such as preventing phages from being adsorbed on the surface of host bacteria; through the superinfection exclusion (Sie) block of phage's nucleic acid injection; by restricting modification (R-M) systems, CRISPR-Cas, aborting infection (Abi) and other defense systems to interfere with the replication of phage genes in the host; through the quorum sensing (QS) enhancement of phage's resistant effect. At the same time, phages have also evolved a variety of counter-defense strategies, such as degrading extracellular polymeric substances (EPS) that mask receptors or recognize new receptors, thereby regaining the ability to adsorb host cells; modifying its own genes to prevent the R-M systems from recognizing phage genes or evolving proteins that can inhibit the R-M complex; through the gene mutation itself, building nucleus-like compartments or evolving anti-CRISPR (Acr) proteins to resist CRISPR-Cas systems; and by producing antirepressors or blocking the combination of autoinducers (AIs) and its receptors to suppress the QS. The arms race between bacteria and phages is conducive to the coevolution between bacteria and phages. This review details bacterial anti-phage strategies and anti-defense strategies of phages and will provide basic theoretical support for phage therapy while deeply understanding the interaction mechanism between bacteria and phages.
Collapse
|
5
|
Uroz S, Geisler O, Fauchery L, Lami R, Rodrigues AMS, Morin E, Leveau JHJ, Oger P. Genomic and transcriptomic characterization of the Collimonas quorum sensing genes and regulon. FEMS Microbiol Ecol 2022; 98:6679101. [PMID: 36040340 DOI: 10.1093/femsec/fiac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/13/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023] Open
Abstract
Collimonads are well-adapted to nutrient-poor environments. They are known to hydrolyse chitin, produce antifungal metabolites, weather minerals, and are effective biocontrol agents protecting plants from fungal diseases. The production of N-acyl homoserine lactones (AHLs) was suggested to be a conserved trait of collimonads, but little is known about the genes that underlie this production or the genes that are controlled by AHLs. To improve our understanding of the role of AHLs in the ecology of collimonads, we carried out transcriptomic analyses, combined with chemical and functional assays, on strain Collimonas pratensis PMB3(1). The main AHLs produced by this strain were identified as 3-hydroxy-hexa- and octa-noyl-homoserine lactone. Genome analysis permitted to identify putative genes coding for the autoinducer synthase (colI) and cognate transcriptional regulator (colR). The ability to produce AHLs was lost in ΔcolI and ΔcolR mutants. Functional assays revealed that the two mutants metabolized glucose, formate, oxalate, and leucine better than the wild-type (WT) strain. Transcriptome sequencing analyses revealed an up-regulation of different metabolic pathways and of motility in the QS-mutants compared to the WT strain. Overall, our results provide insights into the role of the AHL-dependent regulation system of Collimonas in environment colonization, metabolism readjustment, and microbial interactions.
Collapse
Affiliation(s)
- Stephane Uroz
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France.,INRAE, UR1138 "Biogéochimie des écosystèmes forestiers", F-54280 Champenoux, France
| | - Océane Geisler
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France
| | - Laure Fauchery
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM, USR3579), Fédération de Recherche FR3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM, USR3579), Fédération de Recherche FR3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France
| | - Johan H J Leveau
- Department of Plant Pathology, University of California - Davis, Davis, CA 95616, United States
| | - Philippe Oger
- Université Lyon, INSA de Lyon, CNRS UMR 5240, F-69622 Villeurbanne, France
| |
Collapse
|
6
|
Xiong L, Yi F, Yu Q, Huang X, Ao K, Wang Y, Xie Y. Transcriptomic analysis reveals the regulatory role of quorum sensing in the Acinetobacter baumannii ATCC 19606 via RNA-seq. BMC Microbiol 2022; 22:198. [PMID: 35971084 PMCID: PMC9380347 DOI: 10.1186/s12866-022-02612-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Background Acinetobacter baumannii has emerged as the major opportunistic pathogen in healthcare-associated infections with high-level antibiotic resistance and high mortality. Quorum sensing (QS) system is a cell-to-cell bacterial communication mediated by the synthesis, secretion, and binding of auto-inducer signals. It is a global regulatory system to coordinate the behavior of individual bacteria in a population. The present study focused on the QS system, aiming to investigate the regulatory role of QS in bacterial virulence and antibiotic resistance. Method The auto-inducer synthase gene abaI was deleted using the A. baumannii ATCC 19606 strain to interrupt the QS process. The RNA-seq was performed to identify the differentially expressed genes (DEGs) and pathways in the mutant (△abaI) strain compared with the wild-type (WT) strain. Results A total of 380 DEGs [the adjusted P value < 0.05 and the absolute value of log2(fold change) > log21.5] were identified, including 256 upregulated genes and 124 downregulated genes in the △abaI strain. The enrichment analysis indicated that the DEGs involved in arginine biosynthesis, purine metabolism, biofilm formation, and type VI secretion system (T6SS) were downregulated, while the DEGs involved in pathways related to fatty acid metabolism and amino acid metabolism were upregulated. Consistent with the expression change of the DEGs, a decrease in biofilm formation was observed in the △abaI strain compared with the WT strain. On the contrary, no obvious changes were found in antimicrobial resistance following the deletion of abaI. Conclusions The present study demonstrated the transcriptomic profile of A. baumannii after the deletion of abaI, revealing an important regulatory role of the QS system in bacterial virulence. The deletion of abaI suppressed the biofilm formation in A. baumannii ATCC 19606, leading to decreased pathogenicity. Further studies on the role of abaR, encoding the receptor of auto-inducer in the QS circuit, are required for a better understanding of the regulation of bacterial virulence and pathogenicity in the QS network. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02612-z.
Collapse
Affiliation(s)
- Li Xiong
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Fanli Yi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuju Yu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiyue Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Keping Ao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanfang Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Naeimi Mazraeh F, Hasani A, Sadeghi J, Samadi Kafil H, Soroush Barhaghi MH, Yeganeh Sefidan F, Rishi Sharabiani H, Hematyar Y, Ahangarzadeh Rezaee M. High frequency of blaPER-1 gene in clinical strains of Acinetobacter baumannii and its association with quorum sensing and virulence factors. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Blue light directly modulates the quorum network in the human pathogen Acinetobacter baumannii. Sci Rep 2021; 11:13375. [PMID: 34183737 PMCID: PMC8239052 DOI: 10.1038/s41598-021-92845-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Quorum sensing modulates bacterial collective behaviors including biofilm formation, motility and virulence in the important human pathogen Acinetobacter baumannii. Disruption of quorum sensing has emerged as a promising strategy with important therapeutic potential. In this work, we show that light modulates the production of acyl-homoserine lactones (AHLs), which were produced in higher levels in the dark than under blue light at environmental temperatures, a response that depends on the AHL synthase, AbaI, and on the photoreceptor BlsA. BlsA interacts with the transcriptional regulator AbaR in the dark at environmental temperatures, inducing abaI expression. Under blue light, BlsA does not interact with AbaR, but induces expression of the lactonase aidA and quorum quenching, consistently with lack of motility at this condition. At temperatures found in warm-blooded hosts, the production of AHLs, quorum quenching as well as abaI and aidA expression were also modulated by light, though in this case higher levels of AHLs were detected under blue light than in the dark, in a BlsA-independent manner. Finally, AbaI reduces A. baumannii's ability to kill C. albicans only in the dark both at environmental as well as at temperatures found in warm-blooded hosts. The overall data indicate that light directly modulates quorum network in A. baumannii.
Collapse
|
9
|
Zeng YH, Cheng KK, Cai ZH, Zhu JM, Du XP, Wang Y, Zhou J. Transcriptome analysis expands the potential roles of quorum sensing in biodegradation and physiological responses to microcystin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145437. [PMID: 33736182 DOI: 10.1016/j.scitotenv.2021.145437] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using Novosphingobium sp. ERW19 as a representative strain, our laboratory previously demonstrated that quorum sensing (QS), the cell density-dependent gene regulation system, positively regulates biodegradation of MCs via transcriptional activation of mlr-pathway-associated genes. Increasing evidence indicates that QS is involved in a wide spectrum of regulatory circuits, but it remains unclear which physiological processes in MC degradation besides the expression of MC-degrading genes are also subject to QS-dependent regulation. This study used transcriptome analysis to identify QS-regulated genes during degradation of MCs. A large percentage (up to 32.6%) of the genome of the MC-degrading bacterial strain Novosphingobium sp. ERW19 was significantly differentially expressed in the corresponding QS mutants. Pathway enrichment analysis of QS-regulated genes revealed that QS mainly influenced metabolism-associated pathways, particularly those related to amino acid metabolism, carbohydrate metabolism, and biodegradation and metabolism of xenobiotics. In-depth functional interpretation of QS-regulated genes indicated a variety of pathways were potentially associated with bacterial degradation or physiological responses to MCs, including genes involved in cell motility, cytochrome P450-dependent metabolism of xenobiotics, glutathione S-transferase (GST), envelope stress response, and ribosomes. Furthermore, QS may be involved in regulating the initial and final steps of the catabolic pathway of phenylacetic acid, an intermediate product of MC degradation. Collectively, this global survey of QS-regulated genes in a MC-degrading bacterial strain facilitates a deeper understanding of QS-controlled processes that may be important for bacterial degradation of MCs or may contribute to the physiological responses of bacteria to MCs.
Collapse
Affiliation(s)
- Yan-Hua Zeng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Tsinghua University, Beijing 100084, PR China
| | - Ke-Ke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Tsinghua University, Beijing 100084, PR China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Tsinghua University, Beijing 100084, PR China
| | - Jian-Ming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xiao-Peng Du
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yan Wang
- Shenzhen Polytechnic, Shenzhen 518055, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute for Ocean Engineering, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
10
|
López-Martín M, Dubern JF, Alexander MR, Williams P. AbaM Regulates Quorum Sensing, Biofilm Formation, and Virulence in Acinetobacter baumannii. J Bacteriol 2021; 203:e00635-20. [PMID: 33495249 PMCID: PMC8088503 DOI: 10.1128/jb.00635-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/08/2021] [Indexed: 12/31/2022] Open
Abstract
Acinetobacter baumannii possesses a single divergent luxR/luxRI-type quorum-sensing (QS) locus named abaR/abaI This locus also contains a third gene located between abaR and abaI, which we term abaM, that codes for an uncharacterized member of the RsaM protein family known to regulate N-acylhomoserine lactone (AHL)-dependent QS in other beta- and gammaproteobacteria. Here, we show that disruption of abaM via a T26 insertion in A. baumannii strain AB5075 resulted in increased production of N-(3-hydroxydodecanoyl)-l-homoserine lactone and enhanced surface motility and biofilm formation. In contrast to the wild type and the abaI::T26 mutant, the virulence of the abaM::T26 mutant was completely attenuated in a Galleria mellonella infection model. Transcriptomic analysis of the abaM::T26 mutant revealed that AbaM differentially regulates at least 76 genes, including the csu pilus operon and the acinetin 505 lipopeptide biosynthetic operon, that are involved in surface adherence, biofilm formation and virulence. A comparison of the wild type, abaM::T26 and abaI::T26 transcriptomes, indicates that AbaM regulates ∼21% of the QS regulon including the csu operon. Moreover, the QS genes (abaI and abaR) were among the most upregulated in the abaM::T26 mutant. A. baumanniilux-based abaM reporter gene fusions revealed that abaM expression is positively regulated by QS but negatively autoregulated. Overall, the data presented in this work demonstrates that AbaM plays a central role in regulating A. baumannii QS, virulence, surface motility, and biofilm formation.IMPORTANCEAcinetobacter baumannii is a multiantibiotic-resistant pathogen of global health care importance. Understanding Acinetobacter virulence gene regulation could aid the development of novel anti-infective strategies. In A. baumannii, the abaR and abaI genes that code for the receptor and synthase components of an N-acylhomoserine (AHL) lactone-dependent quorum sensing system (QS) are separated by abaM Here, we show that although mutation of abaM increased AHL production, surface motility, and biofilm development, it resulted in the attenuation of virulence. AbaM was found to control both QS-dependent and QS-independent genes. The significance of this work lies in the identification of AbaM, an RsaM ortholog known to control virulence in plant pathogens, as a modulator of virulence in a human pathogen.
Collapse
Affiliation(s)
- Mario López-Martín
- Biodiscovery Institute, National Biofilms Innovation Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jean-Frédéric Dubern
- Biodiscovery Institute, National Biofilms Innovation Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Morgan R Alexander
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- Biodiscovery Institute, National Biofilms Innovation Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
11
|
Laird TS, Flores N, Leveau JHJ. Bacterial catabolism of indole-3-acetic acid. Appl Microbiol Biotechnol 2020; 104:9535-9550. [PMID: 33037916 DOI: 10.1007/s00253-020-10938-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022]
Abstract
Indole-3-acetic acid (IAA) is a molecule with the chemical formula C10H9NO2, with a demonstrated presence in various environments and organisms, and with a biological function in several of these organisms, most notably in plants where it acts as a growth hormone. The existence of microorganisms with the ability to catabolize or assimilate IAA has long been recognized. To date, two sets of gene clusters underlying this property in bacteria have been identified and characterized: one (iac) is responsible for the aerobic degradation of IAA into catechol, and another (iaa) for the anaerobic conversion of IAA to 2-aminobenzoyl-CoA. Here, we summarize the literature on the products, reactions, and pathways that these gene clusters encode. We explore two hypotheses about the benefit that iac/iaa gene clusters confer upon their bacterial hosts: (1) exploitation of IAA as a source of carbon, nitrogen, and energy; and (2) interference with IAA-dependent processes and functions in other organisms, including plants. The evidence for both hypotheses will be reviewed for iac/iaa-carrying model strains of Pseudomonas putida, Enterobacter soli, Acinetobacter baumannii, Paraburkholderia phytofirmans, Caballeronia glathei, Aromatoleum evansii, and Aromatoleum aromaticum, more specifically in the context of access to IAA in the environments from which these bacteria were originally isolated, which include not only plants, but also soils and sediment, as well as patients in hospital environments. We end the mini-review with an outlook for iac/iaa-inspired research that addresses current gaps in knowledge, biotechnological applications of iac/iaa-encoded enzymology, and the use of IAA-destroying bacteria to treat pathologies related to IAA excess in plants and humans. KEY POINTS: • The iac/iaa gene clusters encode bacterial catabolism of the plant growth hormone IAA. • Plants are not the only environment where IAA or IAA-degrading bacteria can be found. • The iac/iaa genes allow growth at the expense of IAA; other benefits remain unknown.
Collapse
Affiliation(s)
- Tyler S Laird
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616, USA
| | - Neptali Flores
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616, USA
| | - Johan H J Leveau
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|