1
|
Du S, Tihelka E, Yu D, Chen WJ, Bu Y, Cai C, Engel MS, Luan YX, Zhang F. Revisiting the four Hexapoda classes: Protura as the sister group to all other hexapods. Proc Natl Acad Sci U S A 2024; 121:e2408775121. [PMID: 39298489 PMCID: PMC11441524 DOI: 10.1073/pnas.2408775121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Insects represent the most diverse animal group, yet previous phylogenetic analyses based on morphological and molecular data have failed to agree on the evolutionary relationships of early insects and their six-legged relatives (together constituting the clade Hexapoda). In particular, the phylogenetic positions of the three early-diverging hexapod lineages-the coneheads (Protura), springtails (Collembola), and two-pronged bristletails (Diplura)-have been debated for over a century, with alternative topologies implying drastically different scenarios of the evolution of the insect body plan and hexapod terrestrialization. We addressed this issue by sampling all hexapod orders and experimenting with a broad range of across-site compositional heterogeneous models designed to tackle ancient divergences. Our analyses support Protura as the earliest-diverging hexapod lineage ("Protura-sister") and Collembola as a sister group to Diplura, a clade corresponding to the original composition of Entognatha, and characterized by the shared possession of internal muscles in the antennal flagellum. The previously recognized 'Elliplura' hypothesis is recovered only under the site-homogeneous substitution models with partial supermatrices. Our cross-validation analysis shows that the site-heterogeneous CAT-GTR model, which recovers "Protura-sister," fits significantly better than homogeneous models. Furthermore, the morphologically unusual Protura are also supported as the earliest-diverging hexapod lineage by other lines of evidence, such as mitogenomes, comparative embryology, and sperm morphology, which produced results similar to those in this study. Our backbone phylogeny of hexapods will facilitate the exploration of the underpinnings of hexapod terrestrialization and megadiversity.
Collapse
Affiliation(s)
- Shiyu Du
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing210008, China
| | - Erik Tihelka
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing210008, China
- Department of Earth Sciences, University of Cambridge, CambridgeCB2 1TN, United Kingdom
| | - Daoyuan Yu
- Department of Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing210095, China
| | - Wan-Jun Chen
- Mammoth (Shenzhen) Education Technology Co. Ltd, Shenzhen518000, China
| | - Yun Bu
- Natural History Research Center, Shanghai Natural History Museum, Shanghai Science & Technology Museum, Shanghai200041, China
| | - Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing210008, China
| | - Michael S. Engel
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY10024
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima15081, Perú
- Departamento de Entomología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima15081, Perú
| | - Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou510631, China
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
2
|
Tischer M, Bleidorn C. Further evidence of low infection frequencies of Wolbachia in soil arthropod communities. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105641. [PMID: 39004260 DOI: 10.1016/j.meegid.2024.105641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Endosymbiotic Alphaproteobacteria of the genus Wolbachia are exclusively transferred maternally from mother to offspring, but horizontal transfer across species boundaries seems to be frequent as well. However, the (ecological) mechanisms of how these bacteria are transferred between distantly related arthropod hosts remain unclear. Based on the observation that species that are part of the same ecological community often also share similar Wolbachia strains, host ecology has been hypothesized as an important factor enabling transmission and a key factor in explaining the global distribution of Wolbachia lineages. In this study, we focus on the diversity and abundance of Wolbachia strains in soil arthropods, a so far rather neglected community. We screened 82 arthropod morphotypes collected in the beech forest (dominated by Fagus sp.) soil in the area of Göttingen in central Germany for the presence of Wolbachia. By performing a PCR screen with Wolbachia-MLST markers (coxA, dnaA, fbpA, ftsZ, gatB, and hcpA), we found a rather low infection frequency of 12,2%. Additionally, we performed metagenomic screening of pooled individuals from the same sampling site and could not find evidence that this low infection frequency is an artefact due to PCR-primer bias. Phylogenetic analyses of the recovered Wolbachia strains grouped them in three known supergroups (A, B, and E), with the first report of Wolbachia in Protura (Hexapoda). Moreover, Wolbachia sequences from the pseudoscorpion Neobisium carcinoides cluster outside the currently known supergroup diversity. Our screening supports results from previous studies that the prevalence of Wolbachia infections seems to be lower in soil habitats than in above-ground terrestrial habitats. The reasons for this pattern are not completely understood but might stem from the low opportunity of physical contact and the prevalence of supergroups that are less suited for horizontal transfer.
Collapse
Affiliation(s)
- Marta Tischer
- Department for Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany.
| | - Christoph Bleidorn
- Department for Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany.
| |
Collapse
|
3
|
Caterino M, Recuero E. Molecular diversity of Protura in southern High Appalachian leaf litter. Biodivers Data J 2023; 11:e113342. [PMID: 38312343 PMCID: PMC10838044 DOI: 10.3897/bdj.11.e113342] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 02/06/2024] Open
Abstract
The higher elevations of the southern Appalachian Mountains, U.S.A., host a rich, but little-studied fauna of Proturan hexapods. Here, we publish 117 Proturan barcode sequences from this region, estimated by automated species delimitation methods to represent 72 distinct species, whereas only nine species have previously been reported from the region. Two families, Eosentomidae and Acerentomidae, co-occur at most sampling sites, with as many as five species occurring in sympatry. Most populations exhibit very low haplotype diversity, but divergences amongst populations and amongst closely-related species are very high, a finding common to other phylogeographic studies of Proturans. Though we were unable to identify any of the barcodes to species, they form a useful, if preliminary, glimpse of southern Appalachian Proturan diversity.
Collapse
Affiliation(s)
- Michael Caterino
- Clemson University, Clemson, United States of America Clemson University Clemson United States of America
| | - Ernesto Recuero
- Clemson University, Clemson, United States of America Clemson University Clemson United States of America
| |
Collapse
|
4
|
Dittrich K, Wipfler B. A review of the hexapod tracheal system with a focus on the apterygote groups. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 63:101072. [PMID: 34098323 DOI: 10.1016/j.asd.2021.101072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Respiratory systems are key innovations for the radiation of terrestrial arthropods. It is therefore surprising that there is still a considerable lack of knowledge. In this review of the available information on tracheal systems of hexapods (with a focus on the apterygote lineages Protura, Collembola, Diplura, Archaeognatha and Zygentoma), we summarize available data on the spiracles (number, position and morphology), the shape and variability of tracheal branching patterns including anastomoses, the tracheal fine structure and the respiratory proteins. The available data are strongly fragmented, and information for most subgroups is missing. In various cases, individual observations for one species account for the knowledge of the entire order. The available data show that there are strong differences between but also within apterygote orders. We conclude that the available data are insufficient to derive detailed conclusions on the hexapod ground plan and outline the possible evolutionary scenarios for the tracheal system in this group.
Collapse
Affiliation(s)
- Kathleen Dittrich
- Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany.
| | - Benjamin Wipfler
- Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany.
| |
Collapse
|
5
|
Protura in Arctic Regions, with Description of Mastodonentomon n. gen. (Acerentomidae, Nipponentominae) and a Key to Known Arctic Taxa. INSECTS 2020; 11:insects11030173. [PMID: 32182866 PMCID: PMC7143616 DOI: 10.3390/insects11030173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 11/16/2022]
Abstract
Protura are widespread, but their presence in the Arctic was first noted only ca. 70 years ago and is still little acknowledged. This work compiles taxonomic information on proturans in the Arctic regions and adds unpublished data from Northern Siberia. Currently, this fauna is represented by 23 species in two orders and 14 genera. The large cosmopolitan genus Eosentomon is represented by only four species, whereas Acerentomidae is much more diverse, with 19 species in 13 genera (eight Nipponentominae, five Acerentominae). Most of the Arctic species possess a larger number of setae than species living in temperate regions. Based on several unique characters, a new genus, Mastodonentomon, is erected for Nipponentomon macleani, and the species is re-described with the original description supplemented with new characters, including head chaetotaxy, seta length, and porotaxy. Proturan occurrence in the Arctic is limited to Beringia, but the majority of species have restricted distributions and none have been found in both the American Arctic and Siberia. This implies relict origins and high levels of proturan endemism in the Arctic. This emerging view on biogeographical history is, however, hampered by the limited extent of available data, which highlights the need for considerably greater survey efforts. A key to Arctic proturans is provided to facilitate further studies.
Collapse
|