1
|
Wei Q, Song Z, Chen Y, Yang H, Chen Y, Liu Z, Yu Y, Tu Q, Du J, Li H. Metagenomic Sequencing Elucidated the Microbial Diversity of Rearing Water Environments for Sichuan Taimen ( Hucho bleekeri). Genes (Basel) 2024; 15:1314. [PMID: 39457438 PMCID: PMC11507828 DOI: 10.3390/genes15101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Sichuan taimen (Hucho bleekeri) is a fish species endemic to China's upper Yangtze River drainage and has significant value as an aquatic resource. It was listed as a first-class state-protected wild animal by the Chinese government due to its very limited distribution and wild population at present. METHODS To elucidate the diversity of microorganisms in rearing water environments for H. bleekeri, metagenomic sequencing was applied to water samples from the Maerkang and Jiguanshan fish farms, where H. bleekeri were reared. RESULTS The results revealed that Pseudomonadota was the dominant phylum in the microbial communities of the water samples. Among the shared bacterial groups, Cyanobacteriota, Actinomycetota, Planctomycetota, Nitrospirota, and Verrucomicrobiota were significantly enriched in the water environment of Jiguanshan (p < 0.01), while Bacteroidota was more enriched in that of Maerkang (p < 0.01). Additionally, the Shannon diversity and Simpson index of the microbial community in the water environment of Maerkang were lower than in that of Jiguanshan. CONCLUSIONS The present study demonstrated the similarities and differences in the microbial compositions of rearing water environments for H. bleekeri, which are expected to benefit the artificial breeding of H. bleekeri in the future.
Collapse
Affiliation(s)
- Qinyao Wei
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Yeyu Chen
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Huanchao Yang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Yanling Chen
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Zhao Liu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Yi Yu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Quanyu Tu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Jun Du
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Hua Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| |
Collapse
|
2
|
Varela JL, Nikouli E, Medina A, Papaspyrou S, Kormas K. The gills and skin microbiota of five pelagic fish species from the Atlantic Ocean. Int Microbiol 2024:10.1007/s10123-024-00524-8. [PMID: 38740652 DOI: 10.1007/s10123-024-00524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
The gills and skin microbiota and microbiome of wild fish remain far more under-investigated compared to that of farmed fish species, despite that these animal-microbe interactions hold the same ecophysiological roles in both cases. In this study, the gills and skin bacterial microbiota profiles and their presumptive bacterial metabolisms were investigated in five open-sea fishes: bullet tuna (Auxis sp.), common dolphinfish (Coryphaena hippurus), Atlantic little tunny (Euthynnus alletteratus), Atlantic bonito (Sarda sarda) and Atlantic white marlin (Kajikia albida). Gills and skin tissues were collected from two to three individuals per species, from specimens caught by recreational trolling during summer of 2019, and their bacterial 16S rRNA gene diversity was analysed by high-throughput sequencing. The gills bacterial communities among the five species were clearly different but not the skin bacterial microbiota. The dominant operational taxonomic units belonged to the Moraxellaceae, Pseudomonadaceae, Rhodobacteraceae, Staphylococcaceae and Vibrionaceae families. Despite the differences in taxonomic composition, the presumptive bacterial metabolisms between the gills and skin of the five fishes investigated here were ≥ 94% similar and were dominated by basic metabolism, most likely reflecting the continuous exposure of these tissues in the surrounding seawater.
Collapse
Affiliation(s)
- José Luis Varela
- Department of Biology, University of Cádiz, Puerto Real, 11510, Cádiz, Spain
| | - Eleni Nikouli
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46, Volos, Greece
| | - Antonio Medina
- Department of Biology, University of Cádiz, Puerto Real, 11510, Cádiz, Spain
| | - Sokratis Papaspyrou
- Department of Biology, University of Cádiz, Puerto Real, 11510, Cádiz, Spain
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46, Volos, Greece.
- Agricultural Development Institute, University Research and Innovation Centre "IASON", Argonafton & Filellinon, 382 21, Volos, Greece.
| |
Collapse
|
3
|
Paralika V, Kokou F, Karapanagiotis S, Makridis P. Characterization of Host-Associated Microbiota and Isolation of Antagonistic Bacteria from Greater Amberjack ( Seriola dumerili, Risso, 1810) Larvae. Microorganisms 2023; 11:1889. [PMID: 37630449 PMCID: PMC10456766 DOI: 10.3390/microorganisms11081889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Greater amberjack (Seriola dumerili) is a new species in marine aquaculture with high mortalities at the larval stages. The microbiota of amberjack larvae was analyzed using 16S rDNA sequencing in two groups, one added copepod nauplii (Acartia tonsa) in the diet, and one without copepods (control). In addition, antagonistic bacteria were isolated from amberjack larvae and live food cultures. Proteobacteria was the most abundant phylum followed by Bacteroidota in amberjack larvae. The composition and diversity of the microbiota were influenced by age, but not by diet. Microbial community richness and diversity significantly increased over time. Rhodobacteraceae was the most dominant family followed by Vibrionaceae, which showed the highest relative abundance in larvae from the control group 31 days after hatching. Alcaligenes and Thalassobius genera exhibited a significantly higher relative abundance in the copepod group. Sixty-two antagonistic bacterial strains were isolated and screened for their ability to inhibit four fish pathogens (Aeromonas veronii, Vibrio harveyi, V. anguillarum, V. alginolyticus) using a double-layer test. Phaeobacter gallaeciensis, Phaeobacter sp., Ruegeria sp., and Rhodobacter sp. isolated from larvae and Artemia sp. inhibited the fish pathogens. These antagonistic bacteria could be used as host-derived probiotics to improve the growth and survival of the greater amberjack larvae.
Collapse
Affiliation(s)
| | - Fotini Kokou
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands;
| | | | - Pavlos Makridis
- Department of Biology, University of Patras, 26504 Rio, Greece;
| |
Collapse
|
4
|
Fiedler AW, Drågen MKR, Lorentsen ED, Vadstein O, Bakke I. The stability and composition of the gut and skin microbiota of Atlantic salmon throughout the yolk sac stage. Front Microbiol 2023; 14:1177972. [PMID: 37485532 PMCID: PMC10358989 DOI: 10.3389/fmicb.2023.1177972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
The bacterial colonization of newly hatched fish is important for the larval development and health. Still, little is known about the ontogeny of the early microbiota of fish. Here, we conducted two independent experiments with yolk sac fry of Atlantic salmon that were (1) either reared conventionally, with the eggs as the only source for bacteria (egg-derived microbiota; EDM) or (2) hatched germ-free and re-colonized using lake water (lake-derived microbiota; LDM). First, we characterized the gut and skin microbiota at 6, 9, and 13 weeks post hatching based on extracted RNA. In the second experiment, we exposed fry to high doses of either a fish pathogen or a commensal bacterial isolate and sampled the microbiota based on extracted DNA. The fish microbiota differed strongly between EDM and LDM treatments. The phyla Proteobacteria, Bacteroidetes, and Actinobacteria dominated the fry microbiota, which was found temporarily dynamic. Interestingly, the microbiota of EDM fry was more stable, both between replicate rearing flasks, and over time. Although similar, the skin and gut microbiota started to differentiate during the yolk sac stage, several weeks before the yolk was consumed. Addition of high doses of bacterial isolates to fish flasks had only minor effects on the microbiota.
Collapse
|
5
|
Ziab M, Chaganti SR, Heath DD. The effects of host quantitative genetic architecture on the gut microbiota composition of Chinook salmon (Oncorhynchus tshawytscha). Heredity (Edinb) 2023; 131:43-55. [PMID: 37179383 PMCID: PMC10313681 DOI: 10.1038/s41437-023-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
The microbiota consists of microbes living in or on an organism and has been implicated in host health and function. Environmental and host-related factors were shown to shape host microbiota composition and diversity in many fish species, but the role of host quantitative architecture across populations and among families within a population is not fully characterized. Here, Chinook salmon were used to determine if inter-population differences and additive genetic variation within populations influenced the gut microbiota diversity and composition. Specifically, hybrid stocks of Chinook salmon were created by crossing males from eight populations with eggs from an inbred line created from self-fertilized hermaphrodite salmon. Based on high-throughput sequencing of the 16S rRNA gene, significant gut microbial community diversity and composition differences were found among the hybrid stocks. Furthermore, additive genetic variance components varied among hybrid stocks, indicative of population-specific heritability patterns, suggesting the potential to select for specific gut microbiota composition for aquaculture purposes. Determining the role of host genetics in shaping their gut microbiota has important implications for predicting population responses to environmental changes and will thus impact conservation efforts for declining populations of Chinook salmon.
Collapse
Affiliation(s)
- Mubarak Ziab
- Great Lakes Institute for Environmental Research (GLIER), University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research (GLIER), University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
| |
Collapse
|
6
|
Yajima D, Fujita H, Hayashi I, Shima G, Suzuki K, Toju H. Core species and interactions prominent in fish-associated microbiome dynamics. MICROBIOME 2023; 11:53. [PMID: 36941627 PMCID: PMC10026521 DOI: 10.1186/s40168-023-01498-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In aquatic ecosystems, the health and performance of fish depend greatly on the dynamics of microbial community structure in the background environment. Nonetheless, finding microbes with profound impacts on fish's performance out of thousands of candidate species remains a major challenge. METHODS We examined whether time-series analyses of microbial population dynamics could illuminate core components and structure of fish-associated microbiomes in the background (environmental) water. By targeting eel-aquaculture-tank microbiomes as model systems, we reconstructed the population dynamics of the 9605 bacterial and 303 archaeal species/strains across 128 days. RESULTS Due to the remarkable increase/decrease of constituent microbial population densities, the taxonomic compositions of the microbiome changed drastically through time. We then found that some specific microbial taxa showed a positive relationship with eels' activity levels even after excluding confounding effects of environmental parameters (pH and dissolved oxygen level) on population dynamics. In particular, a vitamin-B12-producing bacteria, Cetobacterium somerae, consistently showed strong positive associations with eels' activity levels across the replicate time series of the five aquaculture tanks analyzed. Network theoretical and metabolic modeling analyses further suggested that the highlighted bacterium and some other closely-associated bacteria formed "core microbiomes" with potentially positive impacts on eels. CONCLUSIONS Overall, these results suggest that the integration of microbiology, ecological theory, and network science allows us to explore core species and interactions embedded within complex dynamics of fish-associated microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Daii Yajima
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2133, Japan
| | - Hiroaki Fujita
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2133, Japan
| | - Ibuki Hayashi
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2133, Japan
| | - Genta Shima
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2133, Japan
| | - Kenta Suzuki
- Integrated Bioresource Information Division, BioResource Research Center, RIKEN, Tsukuba, Ibaraki, 305-0074, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2133, Japan.
| |
Collapse
|
7
|
Keiz K, Ulrich S, Wenderlein J, Keferloher P, Wiesinger A, Neuhaus K, Lagkouvardos I, Wedekind H, Straubinger RK. The Development of the Bacterial Community of Brown Trout ( Salmo trutta) during Ontogeny. Microorganisms 2023; 11:211. [PMID: 36677503 PMCID: PMC9863972 DOI: 10.3390/microorganisms11010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Brown trout (Salmo trutta) is an important aquaculture species in Germany, but its production faces challenges due to global warming and a high embryo mortality. Climate factors might influence the fish's bacterial community (BC) and thus increase embryo mortality. Yet, knowledge of the physiological BC during ontogeny in general is scarce. In this project, the BC of brown trout has been investigated in a period from unfertilized egg to 95 days post fertilization (dpf) using 16S rRNA gene amplicon sequencing. Developmental changes differed between early and late ontogeny and major differences in BC occurred especially during early developmental stages. Thus, analysis was conducted separately for 0 to 67 dpf and from 67 to 95 dpf. All analyzed stages were sampled in toto to avoid bias due to different sampling methods in different developmental stages. The most abundant phylum in the BC of all developmental stages was Pseudomonadota, while only two families (Comamonadaceae and Moraxellaceae) occurred in all developmental stages. The early developmental stages until 67 dpf displayed greater shifts in their BC regarding bacterial richness, microbial diversity, and taxonomic composition. Thereafter, in the fry stages, the BC seemed to stabilize and changes were moderate. In future studies, a reduction in the sampling time frames during early development, an increase in sampling numbers, and an attempt for biological reproduction in order to characterize the causes of these variations is recommended.
Collapse
Affiliation(s)
- Katharina Keiz
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Sebastian Ulrich
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Jasmin Wenderlein
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Patrick Keferloher
- Bavarian State Research Center for Agriculture (LfL), Institute for Fisheries (IFI), Weilheimer Straße 8, 82319 Starnberg, Germany
| | - Anna Wiesinger
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL—Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Ilias Lagkouvardos
- Core Facility Microbiome, ZIEL—Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology and Aquaculture (IMBBC), 715 00 Heraklion, Greece
| | - Helmut Wedekind
- Bavarian State Research Center for Agriculture (LfL), Institute for Fisheries (IFI), Weilheimer Straße 8, 82319 Starnberg, Germany
| | - Reinhard K. Straubinger
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| |
Collapse
|
8
|
Kormas K, Nikouli E, Kousteni V, Damalas D. Midgut Bacterial Microbiota of 12 Fish Species from a Marine Protected Area in the Aegean Sea (Greece). MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02154-x. [PMID: 36529834 DOI: 10.1007/s00248-022-02154-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Fish microbiome science is progressing fast, but it is biased toward farmed or laboratory fish species against natural fish populations, which remain considerably underinvestigated. We analyzed the midgut bacterial microbiota of 45 specimens of 12 fish species collected from the Gyaros Island marine protected area (Aegean Sea, Greece). The species belong to seven taxonomic families and are either herbivores or omnivores. Mucosa midgut bacterial diversity was assessed by amplicon metabarcoding of the 16S rRNA V3-V4 gene region. A total of 854 operational taxonomic units (OTUs) were identified. In each fish species, between 2 and 18 OTUs dominated with cumulative relative abundance ≥ 70%. Most of the dominating bacterial taxa have been reported to occur both in wild and farmed fish populations. The midgut bacterial communities were different among the 12 fish species, except for Pagrus pagrus and Pagellus erythrinus, which belong to the Sparidae family. No differentiation of the midgut bacterial microbiota was found based on feeding habits, i.e., omnivorous vs. carnivorous. Comparing wild and farmed P. pagrus midgut bacterial microbiota revealed considerable variation between them. Our results expand the gut microbiota of wild fish and support the host species effect as the more likely factor shaping intestinal bacterial microbiota.
Collapse
Affiliation(s)
- Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 384 46, Volos, Greece.
| | - Eleni Nikouli
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 384 46, Volos, Greece
| | - Vasiliki Kousteni
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 710 03, Heraklion, Greece
- Fisheries Research Institute, Hellenic Agricultural Organization - Demeter, 640 07, Nea Peramos, Greece
| | - Dimitrios Damalas
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 710 03, Heraklion, Greece
| |
Collapse
|
9
|
Al-Ashhab A, Alexander-Shani R, Avrahami Y, Ehrlich R, Strem RI, Meshner S, Shental N, Sharon G. Sparus aurata and Lates calcarifer skin microbiota under healthy and diseased conditions in UV and non-UV treated water. Anim Microbiome 2022; 4:42. [PMID: 35729615 PMCID: PMC9210813 DOI: 10.1186/s42523-022-00191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022] Open
Abstract
Background The welfare of farmed fish is influenced by numerous environmental and management factors. Fish skin is an important site for immunity and a major route by which infections are acquired. The objective of this study was to characterize bacterial composition variability on skin of healthy, diseased, and recovered Gilthead Seabream (Sparus aurata) and Barramundi (Lates calcarifer). S. aurata, which are highly sensitive to gram-negative bacteria, were challenged with Vibrio harveyi. In addition, and to provide a wider range of infections, both fish species (S. aurata and L. calcarifer) were infected with gram-positive Streptococcus iniae, to compare the response of the highly sensitive L. calcarifer to that of the more resistant S. aurata. All experiments also compared microbial communities found on skin of fish reared in UV (a general practice used in aquaculture) and non-UV treated water tanks. Results Skin swab samples were taken from different areas of the fish (lateral lines, abdomen and gills) prior to controlled infection, and 24, 48 and 72 h, 5 days, one week and one-month post-infection. Fish skin microbial communities were determined using Illumina iSeq100 16S rDNA for bacterial sequencing. The results showed that naturally present bacterial composition is similar on all sampled fish skin sites prior to infection, but the controlled infections (T1 24 h post infection) altered the bacterial communities found on fish skin. Moreover, when the naturally occurring skin microbiota did not quickly recover, fish mortality was common following T1 (24 h post infection). We further confirmed the differences in bacterial communities found on skin and in the water of fish reared in non-UV and UV treated water under healthy and diseased conditions. Conclusions Our experimental findings shed light on the fish skin microbiota in relation to fish survival (in diseased and healthy conditions). The results can be harnessed to provide management tools for commercial fish farmers; predicting and preventing fish diseases can increase fish health, welfare, and enhance commercial fish yields. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00191-y.
Collapse
|
10
|
Quero GM, Piredda R, Basili M, Maricchiolo G, Mirto S, Manini E, Seyfarth AM, Candela M, Luna GM. Host-associated and Environmental Microbiomes in an Open-Sea Mediterranean Gilthead Sea Bream Fish Farm. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02120-7. [PMID: 36205738 DOI: 10.1007/s00248-022-02120-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Gilthead seabream is among the most important farmed fish species in the Mediterranean Sea. Several approaches are currently applied to assure a lower impact of diseases and higher productivity, including the exploration of the fish microbiome and its manipulation as a sustainable alternative to improve aquaculture practices. Here, using 16S rRNA gene high-throughput sequencing, we explored the microbiome of farmed seabream to assess similarities and differences among microbial assemblages associated to different tissues and compare them with those in the surrounding environment. Seabream had distinct associated microbiomes according to the tissue and compared to the marine environment. The gut hosted the most diverse microbiome; different sets of dominant ASVs characterized the environmental and fish samples. The similarity between fish and environmental microbiomes was higher in seawater than sediment (up to 7.8 times), and the highest similarity (3.9%) was observed between gill and seawater, suggesting that gills are more closely interacting with the environment. We finally analyzed the potential connections occurring among microbiomes. These connections were relatively low among the host's tissues and, in particular, between the gut and the others fish-related microbiomes; other tissues, including skin and gills, were found to be the most connected microbiomes. Our results suggest that, in mariculture, seabream microbiomes reflect only partially those in their surrounding environment and that the host is the primary driver shaping the seabream microbiome. These data provide a step forward to understand the role of the microbiome in farmed fish and farming environments, useful to enhance disease control, fish health, and environmental sustainability.
Collapse
Affiliation(s)
- Grazia Marina Quero
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy.
| | - Roberta Piredda
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano (Bari), Italy
| | - Marco Basili
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
- Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giulia Maricchiolo
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Messina, Italy
| | - Simone Mirto
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Palermo, Italy
| | - Elena Manini
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | - Anne Mette Seyfarth
- Department of Global Surveillance, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Marco Candela
- Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Gian Marco Luna
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| |
Collapse
|
11
|
Succession of the intestinal bacterial community in Pacific bluefin tuna (Thunnus orientalis) larvae. PLoS One 2022; 17:e0275211. [PMID: 36201490 PMCID: PMC9536584 DOI: 10.1371/journal.pone.0275211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
We investigated the succession process of intestinal bacteria during seed production in full-cycle aquaculture of Pacific bluefin tuna (Thunnus orientalis). During the seed production, eggs, healthy fish, rearing water, and feeds from three experimental rounds in 2012 and 2013 were collected before transferring to offshore net cages and subjected to a fragment analysis of the bacterial community structure. We identified a clear succession of intestinal bacteria in bluefin tuna during seed production. While community structures of intestinal bacteria in the early stage of larvae were relatively similar to those of rearing water and feed, the bacterial community structures seen 17 days after hatching were different. Moreover, although intestinal bacteria in the late stage of larvae were less diverse than those in the early stage of larvae, the specific bacteria were predominant, suggesting that the developed intestinal environment of the host puts selection pressure on the bacteria in the late stage. The specific bacteria in the late stage of larvae, which likely composed 'core microbiota', were also found on the egg surface. The present study highlights that proper management of the seed production process, including the preparation of rearing water, feeds, and fish eggs, is important for the aquaculture of healthy fish.
Collapse
|
12
|
Wu CC, Connell M, Zarb A, Akemann C, Morgan S, McElmurry SP, Love NG, Baker TR. Point-of-use carbon-block drinking water filters change gut microbiome of larval zebrafish. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:655-663. [PMID: 35521795 PMCID: PMC11106719 DOI: 10.1111/1758-2229.13077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Activated carbon block (ACB) point-of-use (PoU) drinking water filters can change the bacterial composition in drinking water. Consuming ACB PoU filtered water may also influence gut microbiomes. This study uses the zebrafish model to evaluate how the ACB PoU filter affects the gut microbiomes and phenotypic responses in larvae and adulthood. An ACB PoU filter manifold system was constructed to feed larval and adult zebrafish tap and filtered water at the early and late stages of the filter operation period. Adult zebrafish gut microbiomes were not affected by exposure to water types and filter stages. Unlike the adult, gut microbiomes of the larvae exposed to filtered water at the late stage of filter operation were dominated by more filter-relevant bacterial taxa, including Comamonadaceae and Brevundimonas, than the early stage-filtered-water- and tap water-exposed larvae. We also found some fish that were either exposed to filtered water at early and late stages or tap water supplied to the filter toward the end of the experiment showed hyperactive locomotion behaviour, and had significantly lower relative abundances of a Pseudomonas spp. (OTU3) than the normally behaved fish. Our findings indicate that ACB PoU filtered water can alter gut microbiomes and affect the behaviour patterns in larval zebrafish.
Collapse
Affiliation(s)
- Chia-Chen Wu
- Department of Environmental and Global Health, University of Florida, Gainesville, FL
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI
| | - Mackenzie Connell
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI
| | - Audrey Zarb
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, MI
| | - Camille Akemann
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI
- Department of Pharmacology, Wayne State University, Detroit, MI
| | - Stephanie Morgan
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, MI
| | - Shawn P. McElmurry
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, MI
| | - Nancy G. Love
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI
| | - Tracie R. Baker
- Department of Environmental and Global Health, University of Florida, Gainesville, FL
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI
- Department of Pharmacology, Wayne State University, Detroit, MI
| |
Collapse
|
13
|
Panteli N, Mastoraki M, Lazarina M, Chatzifotis S, Mente E, Kormas KA, Antonopoulou E. Configuration of Gut Microbiota Structure and Potential Functionality in Two Teleosts under the Influence of Dietary Insect Meals. Microorganisms 2021; 9:microorganisms9040699. [PMID: 33800578 PMCID: PMC8067204 DOI: 10.3390/microorganisms9040699] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Insect meals are considered promising, eco-friendly, alternative ingredients for aquafeed. Considering the dietary influence on establishment of functioning gut microbiota, the effect of the insect meal diets on the microbial ecology should be addressed. The present study assessed diet- and species-specific shifts in gut resident bacterial communities of juvenile reared Dicentrarchus labrax and Sparus aurata in response to three experimental diets with insect meals from three insects (Hermetia illucens, Tenebrio molitor, Musca domestica), using high-throughput Illumina sequencing of the V3–V4 region of the 16S rRNA gene. The dominant phyla were Firmicutes, Proteobacteria and Actinobacteria in all dietary treatments. Anaerococcus sp., Cutibacterium sp. and Pseudomonas sp. in D. labrax, and Staphylococcus sp., Hafnia sp. and Aeromonas sp. in S. aurata were the most enriched shared species, following insect-meal inclusion. Network analysis of the dietary treatments highlighted diet-induced changes in the microbial community assemblies and revealed unique and shared microbe-to-microbe interactions. PICRUSt-predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly differentiated, including genes associated with metabolic pathways. The present findings strengthen the importance of diet in microbiota configuration and underline that different insects as fish feed ingredients elicit species-specific differential responses of structural and functional dynamics in gut microbial communities.
Collapse
Affiliation(s)
- Nikolas Panteli
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.P.); (M.M.)
| | - Maria Mastoraki
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.P.); (M.M.)
| | - Maria Lazarina
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stavros Chatzifotis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Gournes Pediados, 71003 Heraklion, Greece;
| | - Eleni Mente
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece; (E.M.); (K.A.K.)
| | - Konstantinos Ar. Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece; (E.M.); (K.A.K.)
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.P.); (M.M.)
- Correspondence: ; Tel.: +30-231-099-8563
| |
Collapse
|
14
|
Nikouli E, Meziti A, Smeti E, Antonopoulou E, Mente E, Kormas KA. Gut Microbiota of Five Sympatrically Farmed Marine Fish Species in the Aegean Sea. MICROBIAL ECOLOGY 2021; 81:460-470. [PMID: 32840670 DOI: 10.1007/s00248-020-01580-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, we hypothesized that sympatrically grown farmed fish, i.e. fish which experience similar environmental conditions and nutritionally similar diets, would have more convergent gut microbiota. Using a "common garden" approach, we identified the core microbiota and bacterial community structure differences between five fish species farmed in the same aquaculture site on the west coast of the Aegean Sea, Greece. The investigated individuals were at similar developmental stages and reared in adjacent (< 50 m) aquaculture cages; each cage had 15 kg fish m-3. The diets were nutritionally similar to support optimal growth for each fish species. DNA from the midgut of 3-6 individuals per fish species was extracted and sequenced for the V3-V4 region of the bacterial 16S rRNA. Only 3.9% of the total 181 operational taxonomic units (OTUs) were shared among all fish. Between 5 and 74 OTUs were unique to each fish species. Each of the investigated fish species had a distinct profile of dominant OTUs, i.e. cumulative relative abundance of ≥ 80%. Co-occurrence network analysis for each fish species showed that all networks were strongly dominated by positive correlations between the abundances of their OTUs. However, each fish species had different network characteristics suggesting the differential significance of the OTUs in each of the five fish species midgut. The results of the present study may provide evidence that adult fish farmed in the Mediterranean Sea have a rather divergent and species-specific gut microbiota profile, which are shaped independently of the similar environmental conditions under which they grow.
Collapse
Affiliation(s)
- Eleni Nikouli
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46, Volos, Greece
| | - Alexandra Meziti
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46, Volos, Greece
| | - Evangelia Smeti
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research (HCMR), 46.7km Athens-Sounio Ave., Anavyssos, 19013, Athens, Greece
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Eleni Mente
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46, Volos, Greece
| | - Konstantinos Ar Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46, Volos, Greece.
| |
Collapse
|
15
|
Rosado D, Pérez-Losada M, Pereira A, Severino R, Xavier R. Effects of aging on the skin and gill microbiota of farmed seabass and seabream. Anim Microbiome 2021; 3:10. [PMID: 33499971 PMCID: PMC7934244 DOI: 10.1186/s42523-020-00072-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Background Important changes in microbial composition related to sexual maturation have been already reported in the gut of several vertebrates including mammals, amphibians and fish. Such changes in fish are linked to reproduction and growth during developmental stages, diet transitions and critical life events. We used amplicon (16S rRNA) high-throughput sequencing to characterize the skin and gill bacterial microbiota of farmed seabass and seabream belonging to three different developmental age groups: early and late juveniles and mature adults. We also assessed the impact of the surrounding estuarine water microbiota in shaping the fish skin and gill microbiota. Results Microbial diversity, composition and predicted metabolic functions varied across fish maturity stages. Alpha-diversity in the seabass microbiota varied significantly between age groups and was higher in older fish. Conversely, in the seabream, no significant differences were found in alpha-diversity between age groups. Microbial structure varied significantly across age groups; moreover, high structural variation was also observed within groups. Different bacterial metabolic pathways were predicted to be enriched in the microbiota of both species. Finally, we found that the water microbiota was significantly distinct from the fish microbiota across all the studied age groups, although a high percentage of ASVs was shared with the skin and gill microbiotas. Conclusions We report important microbial differences in composition and potential functionality across different ages of farmed seabass and seabream. These differences may be related to somatic growth and the onset of sexual maturation. Importantly, some of the inferred metabolic pathways could enhance the fish coping mechanisms during stressful conditions. Our results provide new evidence suggesting that growth and sexual maturation have an important role in shaping the microbiota of the fish external mucosae and highlight the importance of considering different life stages in microbiota studies. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-020-00072-2.
Collapse
Affiliation(s)
- Daniela Rosado
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, 4485-661, Porto, Portugal.
| | - Marcos Pérez-Losada
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, 4485-661, Porto, Portugal.,Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052-0066, USA
| | - Ana Pereira
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, 4485-661, Porto, Portugal
| | - Ricardo Severino
- Piscicultura Vale da Lama, Sapal do Vale da Lama, Odiáxere, 8600-258, Lagos, Portugal
| | - Raquel Xavier
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, 4485-661, Porto, Portugal.
| |
Collapse
|
16
|
Borges N, Keller-Costa T, Sanches-Fernandes GMM, Louvado A, Gomes NCM, Costa R. Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. Annu Rev Anim Biosci 2020; 9:423-452. [PMID: 33256435 DOI: 10.1146/annurev-animal-062920-113114] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aquaculture is the fastest-growing sector in food production worldwide. For decades, research on animal physiology, nutrition, and behavior established the foundations of best practices in land-based fish rearing and disease control. Current DNA sequencing, bioinformatics, and data science technologies now allow deep investigations of host-associated microbiomes in a tractable fashion. Adequate use of these technologies can illuminate microbiome dynamics and aid the engineering of microbiome-based solutions to disease prevention in an unprecedented manner. This review examines molecular studies of bacterial diversity, function, and host immunitymodulation at early stages of fish development, where microbial infections cause important economic losses. We uncover host colonization and virulence factors within a synthetic assemblage of fish pathogens using high-end comparative genomics and address the use of probiotics and paraprobiotics as applicable disease-prevention strategies in fish larval and juvenile rearing. We finally propose guidelines for future microbiome research of presumed relevance to fish larviculture.
Collapse
Affiliation(s)
- Nuno Borges
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - Gracinda M M Sanches-Fernandes
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - António Louvado
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; ,
| | - Newton C M Gomes
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; ,
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , , .,Centre of Marine Sciences, Algarve University, 8005-139 Faro, Portugal.,Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
17
|
Piazzon MC, Naya-Català F, Perera E, Palenzuela O, Sitjà-Bobadilla A, Pérez-Sánchez J. Genetic selection for growth drives differences in intestinal microbiota composition and parasite disease resistance in gilthead sea bream. MICROBIOME 2020; 8:168. [PMID: 33228779 PMCID: PMC7686744 DOI: 10.1186/s40168-020-00922-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/09/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND The key effects of intestinal microbiota in animal health have led to an increasing interest in manipulating these bacterial populations to improve animal welfare. The aquaculture sector is no exception and in the last years, many studies have described these populations in different fish species. However, this is not an easy task, as intestinal microbiota is composed of very dynamic populations that are influenced by different factors, such as diet, environment, host age, and genetics. In the current study, we aimed to determine whether the genetic background of gilthead sea bream (Sparus aurata) influences the intestinal microbial composition, how these bacterial populations are modulated by dietary changes, and the effect of selection by growth on intestinal disease resistance. To that aim, three different groups of five families of gilthead sea bream that were selected during two generations for fast, intermediate, or slow growth (F3 generation) were kept together in the same open-flow tanks and fed a control or a well-balanced plant-based diet during 9 months. Six animals per family and dietary treatment were sacrificed and the adherent bacteria from the anterior intestinal portion were sequenced. In parallel, fish of the fast- and slow-growth groups were infected with the intestinal parasite Enteromyxum leei and the disease signs, prevalence, intensity, and parasite abundance were evaluated. RESULTS No differences were detected in alpha diversity indexes among families, and the core bacterial architecture was the prototypical composition of gilthead sea bream intestinal microbiota, indicating no dysbiosis in any of the groups. The plant-based diet significantly changed the microbiota in the intermediate- and slow-growth families, with a much lower effect on the fast-growth group. Interestingly, the smaller changes detected in the fast-growth families potentially accounted for more changes at the metabolic level when compared with the other families. Upon parasitic infection, the fast-growth group showed significantly lower disease signs and parasite intensity and abundance than the slow-growth animals. CONCLUSIONS These results show a clear genome-metagenome interaction indicating that the fast-growth families harbor a microbiota that is more flexible upon dietary changes. These animals also showed a better ability to cope with intestinal infections. Video Abstract.
Collapse
Affiliation(s)
- M. Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Fernando Naya-Català
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Erick Perera
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Oswaldo Palenzuela
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
18
|
Bone A, Bekaert M, Papadopoulou A, McMillan S, Adams A, Davie A, Desbois AP. Bacterial Communities of Ballan Wrasse (Labrus bergylta) Eggs at a Commercial Marine Hatchery. Curr Microbiol 2020; 78:114-124. [PMID: 33230621 PMCID: PMC7815581 DOI: 10.1007/s00284-020-02286-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Ballan wrasse (Labrus bergylta, Ascanius 1767) are cleaner fish cultured in northern Europe to remove sea lice from farmed Atlantic salmon (Salmo salar, Linnaeus 1758). Despite increasing appreciation for the importance of the microbiota on the phenotypes of vertebrates including teleosts, the microbiota of wrasse eggs has yet to be described. Therefore, the aim of this present study was to describe the bacterial component of the microbiota of ballan wrasse eggs shortly after spawning and at 5 days, once the eggs had undergone a routine incubation protocol that included surface disinfection steps in a common holding tank. Triplicate egg samples were collected from each of three spawning tanks and analysis of 16S rRNA gene sequences revealed that 88.6% of reads could be identified to 186 taxonomic families. At Day 0, reads corresponding to members of the Vibrionaceae, Colwelliaceae and Rubritaleaceae families were detected at greatest relative abundances. Bacterial communities of eggs varied more greatly between tanks than between samples deriving from the same tank. At Day 5, there was a consistent reduction in 16S rRNA gene sequence richness across the tanks. Even though the eggs from the different tanks were incubated in a common holding tank, the bacterial communities of the eggs from the different tanks had diverged to become increasingly dissimilar. This suggests that the disinfection and incubation exerted differential effects of the microbiota of the eggs from each tank and that the influence of the tank water on the composition of the egg microbiota was lower than expected. This first comprehensive description of the ballan wrasse egg bacterial community is an initial step to understand the role and function of the microbiota on the phenotype of this fish. In future, mass DNA sequencing methods may be applied in hatcheries to screen for pathogens and as a tool to assess the health status of eggs.
Collapse
Affiliation(s)
- Aileen Bone
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michaël Bekaert
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Athina Papadopoulou
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Stuart McMillan
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Alexandra Adams
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Andrew Davie
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Andrew P Desbois
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| |
Collapse
|
19
|
Balbi T, Vezzulli L, Lasa A, Pallavicini A, Canesi L. Insight into the microbial communities associated with first larval stages of Mytilus galloprovincialis: Possible interference by estrogenic compounds. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108833. [PMID: 32585367 DOI: 10.1016/j.cbpc.2020.108833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
The microbiota, the host-associated community of microbes, play important roles in health status and whole body homeostasis of all organisms, including marine species. In bivalves, the microbiota composition has been mainly investigated in adults, whereas little information is available during development. In this work, the microbiota composition of the first larval stages of Mytilus galloprovincialis was evaluated by 16S rRNA gene-based profiling, at 24 and 48 hours post fertilization in comparison with those of eggs and sperm. The main genera detected in both larvae (Vibrio, Pseudoalteromonas, Psychrobium, Colwellia) derived from eggs. However, a clear shift in microbiota was observed in developing larvae compared to eggs, both in terms of core microbiome and relative abundance of different genera. The results provide a first insight into the composition of the microbial communities associated with gametes and early larvae of mussels. Moreover, the impact on larval microbiome of estrogenic chemicals that potentially affect Mytilus early development, 17βestradiol-E2, Bisphenol A-BPA and Bisphenol F-BPF (10 μg/L), was investigated. Exposure to estrogenic chemicals leads to changes in abundance of different genera, with distinct and common effects depending on the compound and larval stage. Both potential pathogens (Vibrio, Arcobacter, Tenacibaculum) and genera involved in xenobiotic biotransformation (Oleispira, Shewanella) were affected. The effects of estrogenic compounds on larval microbiome were not related to their developmental effects: however, the results address the importance of evaluating the impact of emerging contaminants on the microbiota of marine invertebrates, including larval stages, that are most sensitive to environmental perturbations.
Collapse
Affiliation(s)
- T Balbi
- DISTAV, Dept. of Earth, Environment and Life Sciences, University of Genoa, Italy.
| | - L Vezzulli
- DISTAV, Dept. of Earth, Environment and Life Sciences, University of Genoa, Italy
| | - A Lasa
- Dept. of Microbiology and Parasitology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Pallavicini
- Dept. of Life Sciences, University of Trieste, Italy
| | - L Canesi
- DISTAV, Dept. of Earth, Environment and Life Sciences, University of Genoa, Italy
| |
Collapse
|