1
|
Shaw B, Foggin S, Hamilton-Stanley P, Barlow A, Pickard C, Fibiger L, Oldham N, Tighe P, Kootker LM, Schrader S, Layfield R. Antibody-based sex determination of human skeletal remains. iScience 2023; 26:108191. [PMID: 37953951 PMCID: PMC10632104 DOI: 10.1016/j.isci.2023.108191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Assignment of biological sex to skeletal remains is critical in the accurate reconstruction of the past. Analysis of sex-chromosome encoded AMELX and AMELY peptides from the enamel protein amelogenin underpins a minimally destructive mass spectrometry (MS) method for sex determination of human remains. However, access to such specialist approaches limits applicability. As a convenient alternative, we generated antibodies that distinguish human AMELX and AMELY. Purified antibodies demonstrated high selectivity and quantitative detection against synthetic peptides by ELISA. Using acid etches of enamel from post-medieval skeletons, antibody determinations corrected osteological uncertainties and matched parallel MS, and for Bronze Age samples where only enamel was preserved, also matched MS analyses. Toward improved throughput, automated stations were applied to analyze 19th-century teeth where sex of individuals was documented, confirming MS can be bypassed. Our immunological tools should underpin development of routine, economical, high-throughput methods for sex determination, potentially even in a field setting.
Collapse
Affiliation(s)
- Barry Shaw
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Sophie Foggin
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Andy Barlow
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh, UK
| | - Catriona Pickard
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh, UK
| | - Linda Fibiger
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh, UK
| | - Neil Oldham
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Patrick Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Lisette M. Kootker
- Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sarah Schrader
- Faculty of Archaeology, Leiden University, Leiden, the Netherlands
| | - Rob Layfield
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Atağ G, Vural KB, Kaptan D, Özkan M, Koptekin D, Sağlıcan E, Doğramacı S, Köz M, Yılmaz A, Söylev A, Togan İ, Somel M, Özer F. MTaxi: A comparative tool for taxon identification of ultra low coverage ancient genomes. OPEN RESEARCH EUROPE 2023; 2:100. [PMID: 37829208 PMCID: PMC10565424 DOI: 10.12688/openreseurope.14936.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
A major challenge in zooarchaeology is to morphologically distinguish closely related species' remains, especially using small bone fragments. Shotgun sequencing aDNA from archeological remains and comparative alignment to the candidate species' reference genomes will only apply when reference nuclear genomes of comparable quality are available, and may still fail when coverages are low. Here, we propose an alternative method, MTaxi, that uses highly accessible mitochondrial DNA (mtDNA) to distinguish between pairs of closely related species from ancient DNA sequences. MTaxi utilises mtDNA transversion-type substitutions between pairs of candidate species, assigns reads to either species, and performs a binomial test to determine the sample taxon. We tested MTaxi on sheep/goat and horse/donkey data, between which zooarchaeological classification can be challenging in ways that epitomise our case. The method performed efficiently on simulated ancient genomes down to 0.3x mitochondrial coverage for both sheep/goat and horse/donkey, with no false positives. Trials on n=18 ancient sheep/goat samples and n=10 horse/donkey samples of known species identity also yielded 100% accuracy. Overall, MTaxi provides a straightforward approach to classify closely related species that are difficult to distinguish through zooarchaeological methods using low coverage aDNA data, especially when similar quality reference genomes are unavailable. MTaxi is freely available at https://github.com/goztag/MTaxi.
Collapse
Affiliation(s)
- Gözde Atağ
- Biological Sciences, Middle East Technical University, Ankara, Turkey
| | | | - Damla Kaptan
- Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Mustafa Özkan
- Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Dilek Koptekin
- Biological Sciences, Middle East Technical University, Ankara, Turkey
- Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Ekin Sağlıcan
- Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Sevcan Doğramacı
- Computer Engineering, Konya Food and Agriculture University, Konya, Turkey
| | - Mevlüt Köz
- Molecular Biology and Genetics, Konya Food and Agriculture University, Konya, Turkey
| | - Ardan Yılmaz
- Computer Engineering, Middle East Technical University, Ankara, Turkey
| | - Arda Söylev
- Computer Engineering, Konya Food and Agriculture University, Konya, Turkey
| | - İnci Togan
- Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Mehmet Somel
- Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Füsun Özer
- Anthropology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Xu W, Lin Y, Zhao K, Li H, Tian Y, Ngatia JN, Ma Y, Sahu SK, Guo H, Guo X, Xu YC, Liu H, Kristiansen K, Lan T, Zhou X. An efficient pipeline for ancient DNA mapping and recovery of endogenous ancient DNA from whole-genome sequencing data. Ecol Evol 2021; 11:390-401. [PMID: 33437437 PMCID: PMC7790629 DOI: 10.1002/ece3.7056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/10/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Ancient DNA research has developed rapidly over the past few decades due to improvements in PCR and next-generation sequencing (NGS) technologies, but challenges still exist. One major challenge in relation to ancient DNA research is to recover genuine endogenous ancient DNA sequences from raw sequencing data. This is often difficult due to degradation of ancient DNA and high levels of contamination, especially homologous contamination that has extremely similar genetic background with that of the real ancient DNA. In this study, we collected whole-genome sequencing (WGS) data from 6 ancient samples to compare different mapping algorithms. To further explore more effective methods to separate endogenous DNA from homologous contaminations, we attempted to recover reads based on ancient DNA specific characteristics of deamination, depurination, and DNA fragmentation with different parameters. We propose a quick and improved pipeline for separating endogenous ancient DNA while simultaneously decreasing homologous contaminations to very low proportions. Our goal in this research was to develop useful recommendations for ancient DNA mapping and for separation of endogenous DNA to facilitate future studies of ancient DNA.
Collapse
Affiliation(s)
- Wenhao Xu
- Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Yu Lin
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and WriteBGI‐ShenzhenShenzhenChina
| | - Keliang Zhao
- Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| | - Haimeng Li
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Yinping Tian
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | | | - Yue Ma
- College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Huabing Guo
- Forest Inventory and Planning Institute of Jilin ProvinceChangchunChina
| | - Xiaosen Guo
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Guangdong Provincial Academician Workstation of BGI Synthetic GenomicsBGI‐ShenzhenShenzhenChina
| | - Yan Chun Xu
- College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
| | - Huan Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Department of BiologyLaboratory of Genomics and Molecular BiomedicineUniversity of CopenhagenCopenhagenDenmark
| | - Karsten Kristiansen
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Department of BiologyLaboratory of Genomics and Molecular BiomedicineUniversity of CopenhagenCopenhagenDenmark
| | - Tianming Lan
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Department of BiologyLaboratory of Genomics and Molecular BiomedicineUniversity of CopenhagenCopenhagenDenmark
| | - Xinying Zhou
- Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| |
Collapse
|