1
|
Nguyen V, Li Y, Lu T. Emergence of Orchestrated and Dynamic Metabolism of Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:1442-1453. [PMID: 38657170 PMCID: PMC11103795 DOI: 10.1021/acssynbio.3c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Microbial metabolism is a fundamental cellular process that involves many biochemical events and is distinguished by its emergent properties. While the molecular details of individual reactions have been increasingly elucidated, it is not well understood how these reactions are quantitatively orchestrated to produce collective cellular behaviors. Here we developed a coarse-grained, systems, and dynamic mathematical framework, which integrates metabolic reactions with signal transduction and gene regulation to dissect the emergent metabolic traits of Saccharomyces cerevisiae. Our framework mechanistically captures a set of characteristic cellular behaviors, including the Crabtree effect, diauxic shift, diauxic lag time, and differential growth under nutrient-altered environments. It also allows modular expansion for zooming in on specific pathways for detailed metabolic profiles. This study provides a systems mathematical framework for yeast metabolic behaviors, providing insights into yeast physiology and metabolic engineering.
Collapse
Affiliation(s)
- Viviana Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yifei Li
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ting Lu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
He B, Sachla AJ, Helmann JD. TerC proteins function during protein secretion to metalate exoenzymes. Nat Commun 2023; 14:6186. [PMID: 37794032 PMCID: PMC10550928 DOI: 10.1038/s41467-023-41896-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
Cytosolic metalloenzymes acquire metals from buffered intracellular pools. How exported metalloenzymes are appropriately metalated is less clear. We provide evidence that TerC family proteins function in metalation of enzymes during export through the general secretion (Sec-dependent) pathway. Bacillus subtilis strains lacking MeeF(YceF) and MeeY(YkoY) have a reduced capacity for protein export and a greatly reduced level of manganese (Mn) in the secreted proteome. MeeF and MeeY copurify with proteins of the general secretory pathway, and in their absence the FtsH membrane protease is essential for viability. MeeF and MeeY are also required for efficient function of the Mn2+-dependent lipoteichoic acid synthase (LtaS), a membrane-localized enzyme with an extracytoplasmic active site. Thus, MeeF and MeeY, representative of the widely conserved TerC family of membrane transporters, function in the co-translocational metalation of Mn2+-dependent membrane and extracellular enzymes.
Collapse
Affiliation(s)
- Bixi He
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, NY, 14853-8101, USA
| | - Ankita J Sachla
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, NY, 14853-8101, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, NY, 14853-8101, USA.
| |
Collapse
|
3
|
Ray S, Gaudet R. Structures and coordination chemistry of transporters involved in manganese and iron homeostasis. Biochem Soc Trans 2023; 51:897-923. [PMID: 37283482 PMCID: PMC10330786 DOI: 10.1042/bst20210699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
A repertoire of transporters plays a crucial role in maintaining homeostasis of biologically essential transition metals, manganese, and iron, thus ensuring cell viability. Elucidating the structure and function of many of these transporters has provided substantial understanding into how these proteins help maintain the optimal cellular concentrations of these metals. In particular, recent high-resolution structures of several transporters bound to different metals enable an examination of how the coordination chemistry of metal ion-protein complexes can help us understand metal selectivity and specificity. In this review, we first provide a comprehensive list of both specific and broad-based transporters that contribute to cellular homeostasis of manganese (Mn2+) and iron (Fe2+ and Fe3+) in bacteria, plants, fungi, and animals. Furthermore, we explore the metal-binding sites of the available high-resolution metal-bound transporter structures (Nramps, ABC transporters, P-type ATPase) and provide a detailed analysis of their coordination spheres (ligands, bond lengths, bond angles, and overall geometry and coordination number). Combining this information with the measured binding affinity of the transporters towards different metals sheds light into the molecular basis of substrate selectivity and transport. Moreover, comparison of the transporters with some metal scavenging and storage proteins, which bind metal with high affinity, reveal how the coordination geometry and affinity trends reflect the biological role of individual proteins involved in the homeostasis of these essential transition metals.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| |
Collapse
|
4
|
He B, Sachla AJ, Helmann JD. TerC Proteins Function During Protein Secretion to Metalate Exoenzymes. RESEARCH SQUARE 2023:rs.3.rs-2860473. [PMID: 37292672 PMCID: PMC10246235 DOI: 10.21203/rs.3.rs-2860473/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytosolic metalloenzymes acquire metals from buffered intracellular pools. How exported metalloenzymes are appropriately metalated is less clear. We provide evidence that TerC family proteins function in metalation of enzymes during export through the general secretion (Sec-dependent) pathway. Bacillus subtilis strains lacking MeeF(YceF) and MeeY(YkoY) have a reduced capacity for protein export and a greatly reduced level of manganese (Mn) in the secreted proteome. MeeF and MeeY copurify with proteins of the general secretory pathway, and in their absence the FtsH membrane protease is essential for viability. MeeF and MeeY are also required for efficient function of the Mn2+-dependent lipoteichoic acid synthase (LtaS), a membrane-localized enzyme with an extracytoplasmic active site. Thus, MeeF and MeeY, representative of the widely conserved TerC family of membrane transporters, function in the co-translocational metalation of Mn2+-dependent membrane and extracellular enzymes.
Collapse
Affiliation(s)
- Bixi He
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| | - Ankita J. Sachla
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| |
Collapse
|
5
|
Zvonarev A, Ledova L, Ryazanova L, Valiakhmetov A, Farofonova V, Kulakovskaya T. The YBR056W-A and Its Ortholog YDR034W-B of S. cerevisiae Belonging to CYSTM Family Participate in Manganese Stress Overcoming. Genes (Basel) 2023; 14:genes14050987. [PMID: 37239347 DOI: 10.3390/genes14050987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The CYSTM (cysteine-rich transmembrane module) protein family comprises small molecular cysteine-rich tail-anchored membrane proteins found in many eukaryotes. The Saccharomyces cerevisiae strains carrying the CYSTM genes YDRO34W-B and YBR056W-A (MNC1) fused with GFP were used to test the expression of these genes under different stresses. The YBR056W-A (MNC1) and YDR034W-B genes are expressed under stress conditions caused by the toxic concentrations of heavy metal ions, such as manganese, cobalt, nickel, zinc, cuprum, and 2.4-dinitrophenol uncoupler. The expression level of YDR034W-B was higher than that of YBR056W-A under alkali and cadmium stresses. The Ydr034w-b-GFP and Ybr056w-a-GFP proteins differ in the cellular localization: Ydr034w-b-GFP was mainly observed in the plasma membrane and vacuolar membrane, while Ybr056w-a-GFP was observed in the cytoplasm, probably in intracellular membranes. The null-mutants in both genes demonstrated decreased cell concentration and lytic phenotype when cultivated in the presence of excess manganese. This allows for speculations about the involvement of Mnc1 and Ydr034w-b proteins in manganese stress overcoming.
Collapse
Affiliation(s)
- Anton Zvonarev
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia
| | - Larisa Ledova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia
| | - Lubov Ryazanova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia
| | - Airat Valiakhmetov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia
| | - Vasilina Farofonova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Tatiana Kulakovskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia
| |
Collapse
|
6
|
He B, Sachla AJ, Helmann JD. TerC Proteins Function During Protein Secretion to Metalate Exoenzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536223. [PMID: 37090602 PMCID: PMC10120614 DOI: 10.1101/2023.04.10.536223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cytosolic metalloenzymes acquire metals from buffered intracellular pools. How exported metalloenzymes are appropriately metalated is less clear. We provide evidence that TerC family proteins function in metalation of enzymes during export through the general secretion (Sec-dependent) pathway. Bacillus subtilis strains lacking MeeF(YceF) and MeeY(YkoY) have a reduced capacity for protein export and a greatly reduced level of manganese (Mn) in the secreted proteome. MeeF and MeeY copurify with proteins of the general secretory pathway, and in their absence the FtsH membrane protease is essential for viability. MeeF and MeeY are also required for efficient function of the Mn 2+ -dependent lipoteichoic acid synthase (LtaS), a membrane-localized enzyme with an extracytoplasmic active site. Thus, MeeF and MeeY, representative of the widely conserved TerC family of membrane transporters, function in the co-translocational metalation of Mn 2+ -dependent membrane and extracellular enzymes.
Collapse
Affiliation(s)
- Bixi He
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| | - Ankita J. Sachla
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| |
Collapse
|
7
|
Velázquez D, Průša V, Masrati G, Yariv E, Sychrova H, Ben‐Tal N, Zimmermannova O. Allosteric links between the hydrophilic N-terminus and transmembrane core of human Na + /H + antiporter NHA2. Protein Sci 2022; 31:e4460. [PMID: 36177733 PMCID: PMC9667825 DOI: 10.1002/pro.4460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 12/13/2022]
Abstract
The human Na+ /H+ antiporter NHA2 (SLC9B2) transports Na+ or Li+ across the plasma membrane in exchange for protons, and is implicated in various pathologies. It is a 537 amino acids protein with an 82 residues long hydrophilic cytoplasmic N-terminus followed by a transmembrane part comprising 14 transmembrane helices. We optimized the functional expression of HsNHA2 in the plasma membrane of a salt-sensitive Saccharomyces cerevisiae strain and characterized in vivo a set of mutated or truncated versions of HsNHA2 in terms of their substrate specificity, transport activity, localization, and protein stability. We identified a highly conserved proline 246, located in the core of the protein, as being crucial for ion selectivity. The replacement of P246 with serine or threonine resulted in antiporters with altered substrate specificity that were not only highly active at acidic pH 4.0 (like the native antiporter), but also at neutral pH. P246T/S versions also exhibited increased resistance to the HsNHA2-specific inhibitor phloretin. We experimentally proved that a putative salt bridge between E215 and R432 is important for antiporter function, but also structural integrity. Truncations of the first 50-70 residues of the N-terminus doubled the transport activity of HsNHA2, while changes in the charge at positions E47, E56, K57, or K58 decreased the antiporter's transport activity. Thus, the hydrophilic N-terminal part of the protein appears to allosterically auto-inhibit cation transport of HsNHA2. Our data also show this in vivo approach to be useful for a rapid screening of SNP's effect on HsNHA2 activity.
Collapse
Affiliation(s)
- Diego Velázquez
- Laboratory of Membrane TransportInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Vojtěch Průša
- Laboratory of Membrane TransportInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Gal Masrati
- Department of Biochemistry and Molecular BiologyGeorge S. Wise Faculty of Life Sciences, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Elon Yariv
- Department of Biochemistry and Molecular BiologyGeorge S. Wise Faculty of Life Sciences, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Hana Sychrova
- Laboratory of Membrane TransportInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Nir Ben‐Tal
- Department of Biochemistry and Molecular BiologyGeorge S. Wise Faculty of Life Sciences, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Olga Zimmermannova
- Laboratory of Membrane TransportInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
8
|
He J, Yang B, Hause G, Rössner N, Peiter-Volk T, Schattat MH, Voiniciuc C, Peiter E. The trans-Golgi-localized protein BICAT3 regulates manganese allocation and matrix polysaccharide biosynthesis. PLANT PHYSIOLOGY 2022; 190:2579-2600. [PMID: 35993897 PMCID: PMC9706472 DOI: 10.1093/plphys/kiac387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/18/2022] [Indexed: 05/11/2023]
Abstract
Manganese (Mn2+) is essential for a diversity of processes, including photosynthetic water splitting and the transfer of glycosyl moieties. Various Golgi-localized glycosyltransferases that mediate cell wall matrix polysaccharide biosynthesis are Mn2+ dependent, but the supply of these enzymes with Mn2+ is not well understood. Here, we show that the BIVALENT CATION TRANSPORTER 3 (BICAT3) localizes specifically to trans-cisternae of the Golgi. In agreement with a role in Mn2+ and Ca2+ homeostasis, BICAT3 rescued yeast (Saccharomyces cerevisiae) mutants defective in their translocation. Arabidopsis (Arabidopsis thaliana) knockout mutants of BICAT3 were sensitive to low Mn2+ and high Ca2+ availability and showed altered accumulation of these cations. Despite reduced cell expansion and leaf size in Mn2+-deficient bicat3 mutants, their photosynthesis was improved, accompanied by an increased Mn content of chloroplasts. Growth defects of bicat3 corresponded with an impaired glycosidic composition of matrix polysaccharides synthesized in the trans-Golgi. In addition to the vegetative growth defects, pollen tube growth of bicat3 was heterogeneously aberrant. This was associated with a severely reduced and similarly heterogeneous pectin deposition and caused diminished seed set and silique length. Double mutant analyses demonstrated that the physiological relevance of BICAT3 is distinct from that of ER-TYPE CA2+-ATPASE 3, a Golgi-localized Mn2+/Ca2+-ATPase. Collectively, BICAT3 is a principal Mn2+ transporter in the trans-Golgi whose activity is critical for specific glycosylation reactions in this organelle and for the allocation of Mn2+ between Golgi apparatus and chloroplasts.
Collapse
Affiliation(s)
- Jie He
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Bo Yang
- Independent Junior Research Group—Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Gerd Hause
- Biocentre, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Nico Rössner
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Tina Peiter-Volk
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Martin H Schattat
- Plant Physiology, Institute of Biology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group—Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
9
|
Wu C, Guo Z, Zhang M, Chen H, Peng M, Abubakar YS, Zheng H, Yun Y, Zheng W, Wang Z, Zhou J. Golgi-localized calcium/manganese transporters FgGdt1 and FgPmr1 regulate fungal development and virulence by maintaining Ca 2+ and Mn 2+ homeostasis in Fusarium graminearum. Environ Microbiol 2022; 24:4623-4640. [PMID: 35837846 DOI: 10.1111/1462-2920.16128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
Calcium and manganese transporters play important roles in regulating Ca2+ and Mn2+ homeostasis in cells, which is necessary for the normal physiological activities of eukaryotes. Gdt1 and Pmr1 function as calcium/manganese transporters in the Golgi apparatus. However, the functions of Gdt1 and Pmr1 have not been previously characterized in the plant pathogenic fungus Fusarium graminearum. Here, we identified and characterized the biological functions of FgGdt1 and FgPmr1 in F. graminearum. Our study shows that FgGdt1 and FgPmr1 are both localized to the cis- and medial-Golgi. Disruption of FgGdt1 or FgPmr1 in F. graminearum caused serious defects in vegetative growth, conidiation, sexual development and significantly decreased virulence in wheat but increased deoxynivalenol (DON) production. Importantly, FgGdt1 is involved in Ca2+ and Mn2+ homeostasis and the severe phenotypic defects of the ΔFggdt1 mutant were largely due to loss of FgGdt1 function in Mn2+ transportation. FgGdt1-mCherry colocalizes with FgPmr1-GFP at the Golgi, and FgGDT1 exerts its biological function upstream of FgPMR1. Taken together, our results collectively demonstrate that the cis- and medial-Golgi-localized proteins FgGdt1 and FgPmr1 regulate Ca2+ and Mn2+ homeostasis of the Golgi apparatus, and this function is important in modulating the growth, development, DON biosynthesis and pathogenicity of F. graminearum.
Collapse
Affiliation(s)
- Congxian Wu
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongkun Guo
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meiru Zhang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huilin Chen
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minghui Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakubu Saddeeq Abubakar
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Huawei Zheng
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Jie Zhou
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Wang Y, Liu L, Pu X, Ma C, Qu H, Wei M, Zhang K, Wu Q, Li C. Transcriptome Analysis and SNP Identification Reveal That Heterologous Overexpression of Two Uncharacterized Genes Enhances the Tolerance of Magnaporthe oryzae to Manganese Toxicity. Microbiol Spectr 2022; 10:e0260521. [PMID: 35638819 PMCID: PMC9241697 DOI: 10.1128/spectrum.02605-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Manganese is a crucial trace element that constitutes the cofactors of many enzymes. However, excessive Mn2+ can be toxic for both prokaryotes and eukaryotes. The mechanism of fungal genetics and metabolism in response to Mn2+ stress remains understudied, warranting further studies. Magnaporthe oryzae is well-established as the most destructive pathogen of rice. A field strain, YN2046, more sensitive to Mn2+ toxicity than other strains, was obtained from a previous study. Herein, we explored the genetic mechanisms of Mn2+ sensitivity in YN2046 through comparative transcriptomic analyses. We found that many genes previously reported to participate in Mn2+ stress were not regulated in YN2046. These non-responsive genes might cause Mn2+ sensitivity in YN2046. Weight gene correlation network analysis (WGCNA) was performed to characterize the expression profile in YN2046. Some overexpressed genes were only found in the Mn2+ tolerant isolate YN125. Among these, many single nucleotide polymorphism (SNP) were identified between YN125 and YN2046, which might disrupt the expression levels of Mn responsive genes. We cloned two uncharacterized genes, MGG_13347 and MGG_16609, from YN125 and transformed them to YN2046 with a strong promoter. Our results showed that the heterologous overexpression of two genes in YN2046 restored its sensitivity. Transcriptomic and biochemical analyses were performed to understand Mn tolerance mechanisms mediated by the two heterologous overexpressed genes. Our results showed that heterologous overexpression of these two genes activated downstream gene expression and metabolite production to restore M. oryzae sensitivity to Mn, implying that SNPs in responsive genes account for different phenotypes of the two strains under Mn stress. IMPORTANCE Heavy metals are used for fungicides as they target phytopathogen in multiple ways. Magnaporthe oryzae is the most destructive rice pathogen and is threatening global rice production. In the eukaryotes, the regulation mechanisms of Mn homeostasis often focus on the posttranslation, there were a few results about regulation at transcript level. The comparative transcriptome analysis showed that fewer genes were regulated in the Mn-sensitive strain. WGCNA and SNP analyses found that mutations in promoter and coding sequence regions might disrupt the expression of genes involved in Mn detoxification in the sensitive strain. We transferred two unannotated genes that were cloned from the Mn-tolerant strain into a sensitive strain with strong promoters, and the transformants exhibited an enhanced tolerance to Mn2+ toxicity. Transcriptome and biochemistry results indicated that heterologous overexpression of the two genes enhanced the tolerance to Mn toxicity by reactivation of downstream genes in M. oryzae.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Lina Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Xin Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Chan Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Hao Qu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Mian Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Ke Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Qi Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| |
Collapse
|