1
|
Botchway PK, Amuzu-Aweh EN, Naazie A, Aning GK, Otsyina HR, Saelao P, Wang Y, Zhou H, Dekkers JCM, Lamont SJ, Gallardo RA, Kelly TR, Bunn D, Kayang BB. Genotypic and phenotypic characterisation of three local chicken ecotypes of Ghana based on principal component analysis and body measurements. PLoS One 2024; 19:e0308420. [PMID: 39110760 PMCID: PMC11305577 DOI: 10.1371/journal.pone.0308420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
This study aimed to characterise three Ghanaian local chicken ecotypes, namely, Interior Savannah, Forest, and Coastal Savannah, based on morphological data and single nucleotide polymorphism (SNP) genotypes. Morphological data including body weight, shank length, body girth, back length, thigh length, beak length, comb length, and wattle length were collected from 250 local chickens. DNA isolated from blood of 1,440 local chickens was used for SNP genotyping with the Affymetrix chicken 600k SNP chip. Principal component analysis showed that Forest and Coastal Savannah birds were closely related. Generally, all three ecotypes exhibited high genetic diversity, especially birds from the Interior Savannah zone. Morphological characterisation showed that ecotype (p = 0.016) and sex (p = 0.000) had significant effects on body weight. Birds of the Interior Savannah ecotype were the heaviest (p = 0.004), with mean weights of 1.23 kg for females and 1.40 kg for males. Sex also had a strong significant effect on most of the morphological measurements, but the sex * ecotype interaction effect was not significant. Very few of the feather phenotypes previously reported to be associated with heat resistance-frizzle (2%) and naked neck (1.6%)-were found in the studied populations. It is concluded that the three local ecotypes are genetically diverse but with similar morphological features and the information provided would be useful for future selection decisions.
Collapse
Affiliation(s)
- Princess K. Botchway
- Department of Animal Science, University of Ghana, Legon, Accra, Ghana
- USAID Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States of America
| | - Esinam N. Amuzu-Aweh
- Department of Animal Science, University of Ghana, Legon, Accra, Ghana
- USAID Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States of America
| | - Augustine Naazie
- Department of Animal Science, University of Ghana, Legon, Accra, Ghana
- USAID Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States of America
| | - George K. Aning
- USAID Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States of America
- School of Veterinary Medicine, University of Ghana, Legon, Accra, Ghana
| | - Hope R. Otsyina
- USAID Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States of America
- School of Veterinary Medicine, University of Ghana, Legon, Accra, Ghana
| | - Perot Saelao
- USAID Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States of America
- Department of Animal Science, University of California, Davis, CA, United States of America
| | - Ying Wang
- USAID Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States of America
- Department of Animal Science, University of California, Davis, CA, United States of America
| | - Huaijun Zhou
- USAID Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States of America
- Department of Animal Science, University of California, Davis, CA, United States of America
| | - Jack C. M. Dekkers
- USAID Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States of America
- Department of Animal Science, Iowa State University, Ames, IA, United States of America
| | - Sue J. Lamont
- USAID Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States of America
- Department of Animal Science, Iowa State University, Ames, IA, United States of America
| | - Rodrigo A. Gallardo
- USAID Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States of America
- School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Terra R. Kelly
- USAID Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States of America
- One Health Institute, University of California, Davis, CA, United States of America
| | - David Bunn
- USAID Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States of America
- Department of Animal Science, University of California, Davis, CA, United States of America
| | - Boniface B. Kayang
- Department of Animal Science, University of Ghana, Legon, Accra, Ghana
- USAID Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA, United States of America
| |
Collapse
|
2
|
Lai J, Yang L, Chen F, He X, Zhang R, Zhao Y, Gao G, Mu W, Chen X, Luo S, Ren T, Xiang B. Prevalence and Molecular Characteristics of FAdV-4 from Indigenous Chicken Breeds in Yunnan Province, Southwestern China. Microorganisms 2023; 11:2631. [PMID: 38004643 PMCID: PMC10673041 DOI: 10.3390/microorganisms11112631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Fowl adenovirus-induced hepatitis-pericardial effusion syndrome outbreaks have been increasingly reported in China since 2015, resulting in substantial economic losses to the poultry industry. The genetic diversity of indigenous chicken results in different immune traits, affecting the evolution of these viruses. Although the molecular epidemiology of fowl adenovirus serotype 4 (FAdV-4) has been well studied in commercial broiler and layer chickens, the prevalence and genetic characteristics of FAdV-4 in indigenous chickens remain largely unknown. In this study, samples were collected from six indigenous chicken breeds in Yunnan province, China. FAdV-positive samples were identified in five of the six indigenous chicken populations via PCR and 10 isolates were obtained. All FAdVs belonged to serotype FAdV-4 and species FAdV-C. The hexon, fiber, and penton gene sequence comparison analysis demonstrated that the prevalence of FAdV-4 isolates in these chickens might have originated from other provinces that exported chicks and poultry products to Yunnan province. Moreover, several distinct amino acid mutations were firstly identified in the major structural proteins. Our findings highlighted the need to decrease inter-regional movements of live poultry to protect indigenous chicken genetic resources and that the immune traits of these indigenous chickens might result in new mutations of FAdV-4 strains.
Collapse
Affiliation(s)
- Jinyu Lai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Fashun Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Rongjie Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Yong Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Gan Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Weiwu Mu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Xi Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyu Luo
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Miyumo SA, Wasike CB, Ilatsia ED, Bennewitz J, Chagunda MGG. Genetic and phenotypic correlations among feed efficiency, immune and production traits in indigenous chicken of Kenya. Front Genet 2023; 13:1070304. [PMID: 36685862 PMCID: PMC9849598 DOI: 10.3389/fgene.2022.1070304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
This study aimed at estimating genetic and phenotypic relationships among feed efficiency, immune and production traits measured pre- (9-20 weeks of age) and post- (12 weeks from on-set of lay) maturity. Production traits were average daily gain (ADG) and average daily feed-intake (ADFI1) in the pre-maturity period and age at first egg (AFE), average daily feed-intake (ADFI2) and average daily egg mass (EM) in the post-maturity period. Feed efficiency comprised of residual feed intake (RFI) estimated in both periods. Natural antibodies binding to keyhole limpet hemocyanin (KLH-IgM) and specific antibodies binding to Newcastle disease virus (NDV-IgG) measured at 16 and 28 weeks of age represented immune traits pre- and post-maturity, respectively. In the growing period, 1,820 records on ADG, KLH-IgM and NDV-IgG, and 1,559 records on ADFI1 and RFI were available for analyses. In the laying period, 1,340 records on AFE, EM, KLH-IgM and NDV-IgG, and 1,288 records on ADFI2 and RFI were used in the analyses. Bi-variate animal mixed model was fitted to estimate (co)variance components, heritability and correlations among the traits. The model constituted sex, population, generation, line and genotype as fixed effects, and animal and residual effects as random variables. During the growing period, moderate to high heritability (0.36-0.68) was estimated for the production traits and RFI while the antibody traits had low (0.10-0.22) heritability estimates. Post-maturity, the production traits and RFI were moderately (0.30-0.37) heritable while moderate to high (0.25-0.41) heritability was estimated for the antibody traits. Genetic correlations between feed efficiency and production traits in both periods showed that RFI had negative genetic correlations with ADG (-0.47) and EM (-0.56) but was positively correlated with ADFI1 (0.60), ADFI2 (0.74) and AFE (0.35). Among immune and production traits, KLH-IgM and NDV-IgG had negative genetic correlations with ADG (-0.22; -0.56), AFE (-0.39; -0.42) and EM (-0.35; -0.16) but were positively correlated with ADFI1 (0.41; 0.34) and ADFI2 (0.47; 0.52). Genetic correlations between RFI with KLH-IgM (0.62; 0.33) and NDV-IgG (0.58; 0.50) were positive in both production periods. Feed intake, RFI and antibody traits measured in both production periods were positively correlated with estimates ranging from 0.48 to 0.82. Results from this study indicate selection possibilities to improve production, feed efficiency and immune-competence in indigenous chicken. The genetic correlations suggest that improved feed efficiency would be associated with high growth rates, early maturing chicken, high egg mass and reduced feed intake. In contrast, improved general (KLH-IgM) and specific (NDV-IgG) immunity would result in lower growth rates and egg mass but associated with early sexual maturation and high feed intake. Unfavorable genetic correlations between feed efficiency and immune traits imply that chicken of higher productivity and antibody levels will consume more feed to support both functions. These associations indicate that selective breeding for feed efficiency and immune-competence may have genetic consequences on production traits and should therefore be accounted for in indigenous chicken improvement programs.
Collapse
Affiliation(s)
- Sophie A. Miyumo
- Department of Animal Breeding and Husbandry in the Tropics and Sub-Tropics, University of Hohenheim, Stuttgart, Germany,*Correspondence: Sophie A. Miyumo,
| | - Chrilukovian B. Wasike
- Livestock Efficiency Enhancement Group (LEEG), Department of Animal and Fisheries Sciences, Maseno University, Maseno, Kenya
| | - Evans D. Ilatsia
- Kenya Agricultural and Livestock Research Organization, Naivasha, Kenya
| | - Jorn Bennewitz
- Department of Animal Breeding and Genetics, University of Hohenheim, Stuttgart, Germany
| | - Mizeck G. G. Chagunda
- Department of Animal Breeding and Husbandry in the Tropics and Sub-Tropics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
4
|
Miyumo S, Wasike CB, Ilatsia ED, Bennewitz J, Chagunda MG. Genetic and non-genetic factors influencing KLH binding natural antibodies and specific antibody response to Newcastle disease in Kenyan chicken populations. J Anim Breed Genet 2023; 140:106-120. [PMID: 36069173 DOI: 10.1111/jbg.12738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/21/2022] [Indexed: 12/13/2022]
Abstract
This study aimed at investigating the influence of genetic and non-genetic factors on immune traits to inform on possibilities of genetic improvement of disease resistance traits in local chicken of Kenya. Immune traits such as natural and specific antibodies are considered suitable indicators of an individual's health status and consequently, used as indicator traits of disease resistance. In this study, natural antibodies binding to Keyhole Limpet Hemocyanin (KLH-NAbs) was used to measure general disease resistance. Specific antibodies binding to Newcastle disease virus (NDV-IgG) post vaccination was used to measure specific disease resistance. Titers of KLH-NAbs isotypes (KLH-IgM, KLH-IgG and KLH-IgA) and NDV-IgG were measured in 1,540 chickens of different ages ranging from 12 to 56 weeks. A general linear model was fitted to determine the effect of sex, generation, population type, phylogenetic cluster, line, genotype and age on the antibody traits. A multivariate animal mixed model was fitted to estimate heritability and genetic correlations among the antibody traits. The model constituted of non-genetic factors found to have a significant influence on the antibody traits as fixed effects, and animal and residual effects as random variables. Overall mean (±SE) concentration levels for KLH-IgM, KLH-IgG, KLH-IgA and NDV-IgG were 10.33 ± 0.04, 9.08 ± 0.02, 6.00 ± 0.02 and 10.12 ± 0.03, respectively. Sex, generation and age (linear covariate) significantly (p < 0.05) influenced variation across all the antibody traits. Genotype effects (p < 0.05) were present in all antibody traits, apart from KLH-IgA. Interaction between generation and line was significant (p < 0.05) in KLH-IgM and NDV-IgG while nesting phylogenetic cluster within population significantly (p < 0.05) influenced all antibody traits, apart from KLH-IgA. Heritability estimates for KLH-IgM, KLH-IgG, KLH-IgA and NDV-IgG were 0.28 ± 0.08, 0.14 ± 0.06, 0.07 ± 0.04 and 0.31 ± 0.06, respectively. There were positive genetic correlations (0.40-0.61) among the KLH-NAbs while negative genetic correlations (-0.26 to -0.98) were observed between the KLH-NAbs and NDV-IgG. Results from this study indicate that non-genetic effects due to biological and environmental factors influence natural and specific antibodies and should be accounted for to reduce bias and improve accuracy when evaluating the traits. Subsequently, the moderate heritability estimates in KLH-IgM and NDV-IgG suggest selection possibilities for genetic improvement of general and specific immunity, respectively, and consequently disease resistance. However, the negative correlations between KLH-NAbs and NDV-IgG indicate the need to consider a suitable approach that can optimally combine both traits in a multiple trait selection strategies.
Collapse
Affiliation(s)
- Sophie Miyumo
- Department of Animal Breeding and Husbandry in the Tropics and Sub-tropics, University of Hohenheim, Stuttgart, Germany
| | - Chrilukovian B Wasike
- Livestock Efficiency Enhancement group (LEEG), Department of Animal and Fisheries Sciences, Maseno University, Maseno, Kenya
| | - Evans D Ilatsia
- Poultry Research Program, Kenya Agricultural and Livestock Research Organization, Naivasha, Kenya
| | - Jörn Bennewitz
- Department of Animal Breeding and Genetics, University of Hohenheim, Stuttgart-, Germany
| | - Mizeck G Chagunda
- Department of Animal Breeding and Husbandry in the Tropics and Sub-tropics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
5
|
Genetic Analyses of Response of Local Ghanaian Tanzanian Chicken Ecotypes to a Natural Challenge with Velogenic Newcastle Disease Virus. Animals (Basel) 2022; 12:ani12202755. [PMID: 36290141 PMCID: PMC9597780 DOI: 10.3390/ani12202755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Newcastle disease (ND) is a global threat to poultry production and often has a major impact on chicken welfare and the livelihoods of rural poultry farmers. We exposed unvaccinated Ghanaian and Tanzanian local chicken ecotypes to velogenic Newcastle disease virus strains, and measured response traits to understand the genetic basis of ND. We identified heritable ND response traits and revealed differences in survival between Ghanaian and Tanzanian local chicken ecotype birds. Our findings indicate that velogenic ND resistance could be improved through selective breeding of local chicken ecotypes in regions where the disease is endemic. Abstract Newcastle disease is a devastating poultry disease that often causes significant economic losses in poultry in the developing countries of Africa, Asia, as well as South and Central America. Velogenic Newcastle disease virus (NDV) outbreaks are associated with high mortalities, which can threaten household livelihoods, especially in the rural areas, and lead to loss of high-quality proteins in the form of meat and eggs, as well as household purchasing power. In this study, we exposed unvaccinated Ghanaian and Tanzanian chickens of six local ecotypes to velogenic NDV strains, measured NDV response traits, sequenced their DNA on a genotyping-by-sequencing platform, and performed variance component analyses. The collected phenotypes included: growth rates (pre- and post-exposure); lesion scores (gross lesion severity) in the trachea, proventriculus, intestine, and cecal tonsils; natural antibody levels; anti-NDV antibody levels at 7 days post exposure (dpe); tear and cloacal viral load at 2, 4, and 6 dpe; and survival time. Heritability estimates were low to moderate, ranging from 0.11 for average lesion scores to 0.36 for pre-exposure growth rate. Heritability estimates for survival time were 0.23 and 0.27 for the Tanzanian and Ghanaian ecotypes, respectively. Similar heritability estimates were observed when data were analyzed either separately or combined for the two countries. Survival time was genetically negatively correlated with lesion scores and with viral load. Results suggested that response to mesogenic or velogenic NDV of these local chicken ecotypes could be improved by selective breeding. Chickens that are more resilient to velogenic NDV can improve household livelihoods in developing countries.
Collapse
|
6
|
Dar MA, Ahmad SM, Bhat BA, Dar TA, Haq ZU, Wani BA, Shabir N, Kashoo ZA, Shah RA, Ganai NA, Heidari M. Comparative RNA-Seq analysis reveals insights in Salmonella disease resistance of chicken; and database development as resource for gene expression in poultry. Genomics 2022; 114:110475. [PMID: 36064074 DOI: 10.1016/j.ygeno.2022.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 07/07/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
Salmonella, one of the major infectious diseases in poultry, causes considerable economic losses in terms of mortality and morbidity, especially in countries that lack effective vaccination programs. Besides being resistant to diseases, indigenous chicken breeds are also a potential source of animal protein in developing countries. For understanding the disease resistance, an indigenous chicken line Kashmir faverolla, and commercial broiler were selected. RNA-seq was performed after challenging the chicken with Salmonella Typhimurium. Comparative differential expression results showed that following infection, a total of 3153 genes and 1787 genes were differentially expressed in the liver and spleen, respectively. The genes that were differentially expressed included interleukins, cytokines, NOS2, Avβ-defensins, toll-like receptors, and other immune-related gene families. Most of the genes and signaling pathways involved in the innate and adaptive immune responses against bacterial infection were significantly enriched in the Kashmir faverolla. Pathway analysis revealed that most of the enriched pathways were MAPK signaling pathway, NOD-like receptor signaling pathway, TLR signaling pathway, PPAR signaling pathway, endocytosis, etc. Surprisingly some immune-related genes like TLRs were upregulated in the susceptible chicken breed. On postmortem examination, the resistant birds showed small lesions in the liver compared to large necrotic lesions in susceptible birds. The pathological manifestations and RNA sequencing results suggest a balancing link between resistance and infection tolerance in Kashmir faverolla. Here we also developed an online Poultry Infection Database (https://skuastk.org/pif/index.html), the first publicly available gene expression resource for disease resistance in chickens. The available database not only shows the data for gene expression in chicken tissues but also provides quick search, visualization and download capacity.
Collapse
Affiliation(s)
- Mashooq Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India; Department of Clinical Biochemistry/Biochemistry, University of Kashmir, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India.
| | - Basharat A Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry/Biochemistry, University of Kashmir, India
| | - Zulfqar Ul Haq
- Division of Livestock Poultry and Management, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Basharat A Wani
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Zahid Amin Kashoo
- Division of Veterinary Microbiology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | | | - Mohammad Heidari
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, 4279 E. Mount Hope Rd., East Lansing, MI 48823, USA
| |
Collapse
|
7
|
Botchway P, Amuzu-Aweh E, Naazie A, Aning G, Otsyina H, Saelao P, Wang Y, Zhou H, Walugembe M, Dekkers J, Lamont S, Gallardo R, Kelly T, Bunn D, Kayang B. Host response to successive challenges with lentogenic and velogenic Newcastle disease virus in local chickens of Ghana. Poult Sci 2022; 101:102138. [PMID: 36126448 PMCID: PMC9489513 DOI: 10.1016/j.psj.2022.102138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Newcastle disease (ND) is a highly contagious viral disease that constantly threatens poultry production. The velogenic (highly virulent) form of ND inflicts the most damage and can lead to 100% mortality in unvaccinated village chicken flocks. This study sought to characterize responses of local chickens in Ghana after challenging them with lentogenic and velogenic Newcastle disease virus (NDV) strains. At 4 wk of age, chicks were challenged with lentogenic NDV. Traits measured were pre- and post-lentogenic infection growth rates (GR), viral load at 2 and 6 d post-lentogenic infection (DPI), viral clearance rate and antibody levels at 10 DPI. Subsequently, the chickens were naturally exposed to velogenic NDV (vNDV) after anti-NDV antibody titers had waned to levels ≤1:1,700. Body weights and blood samples were again collected for analysis. Finally, chickens were euthanized and lesion scores (LS) across tissues were recorded. Post-velogenic exposure GR; antibody levels at 21 and 34 days post-velogenic exposure (DPE); LS for trachea, proventriculus, intestines, and cecal tonsils; and average LS across tissues were measured. Variance components and heritabilities were estimated for all traits using univariate animal models. Mean pre- and post-lentogenic NDV infection GRs were 6.26 g/day and 7.93 g/day, respectively, but mean post-velogenic NDV exposure GR was −1.96 g/day. Mean lesion scores ranged from 0.52 (trachea) to 1.33 (intestine), with males having significantly higher (P < 0.05) lesion scores compared to females. Heritability estimates for the lentogenic NDV trial traits ranged from moderate (0.23) to high (0.55) whereas those for the vNDV natural exposure trial were very low (≤ 0.08). Therefore, in contrast to the vNDV exposure trial, differences in the traits measured in the lentogenic challenge were more affected by genetics and thus selection for these traits may be more feasible compared to those following vNDV exposure. Our results can form the basis for identifying local chickens with improved resilience in the face of NDV infection for selective breeding to improve productivity.
Collapse
|
8
|
Shi S, Shao D, Yang L, Liang Q, Han W, Xue Q, Qu L, Leng L, Li Y, Zhao X, Dong P, Walugembe M, Kayang BB, Muhairwa AP, Zhou H, Tong H. Whole Genome Analyses Reveal Novel Genes Associated with Chicken Adaptation to Tropical and Frigid Environments. J Adv Res 2022; 47:13-25. [PMID: 35907630 PMCID: PMC10173185 DOI: 10.1016/j.jare.2022.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/17/2022] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Investigating the genetic footprints of historical temperature selection can get insights to the local adaptation and feasible influences of climate change on long-term population dynamics. OBJECT Chicken is a significative species to study genetic adaptation on account of its similar domestication track related to human activity with the most diversified varieties. Yet, few studies have demonstrated the genetic signatures of its adaptation to naturally tropical and frigid environments. METHOD Here, we generated whole genome resequencing of 119 domesticated chickens in China including the following breeds which are in order of breeding environmental temperature from more tropical to more frigid: Wenchang chicken (WCC), green-shell chicken (GSC), Tibetan chicken (TBC), and Lindian chicken (LDC). RESULTS Our results showed WCC branched off earlier than LDC with an evident genetic admixture between WCC and LDC, suggesting their closer genetic relationship. Further comparative genomic analyses solute carrier family 33 member 1 (SLC33A1) and thyroid stimulating hormone receptor (TSHR) genes exhibited stronger signatures for positive selection in the genome of the more tropical WCC. Furthermore, genotype data from about 3,000 African local ecotypes confirmed that allele frequencies of single nucleotide polymorphisms (SNPs) in these 2 genes appeared strongly associated with tropical environment adaptation. In addition, the NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) gene exhibited a strong signature for positive selection in the LDC genome, and SNPs with marked allele frequency differences indicated a significant relationship with frigid environment adaptation. CONCLUSION Our findings partially clarify how selection footprints from environmental temperature stress can lead to advantageous genomic adaptions to tropical and frigid environments in poultry and provide a valuable resource for selective breeding of chickens.
Collapse
Affiliation(s)
- Shourong Shi
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Lingyun Yang
- Novogene Bioinformatics Institute, Beijing 10089, China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing 10089, China
| | - Wei Han
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Qian Xue
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Liang Qu
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China
| | - Li Leng
- College of Animal Science and technology, Northeast Agricultural University, Harbin, Heilongjiang, 150038, China
| | - Yishu Li
- Tropical Crop Germplasm Research Institute, Haikou, Hainan, 571101, China
| | - Xiaogang Zhao
- Agriculture and Animal Husbandry Rural and Science and Technology Bureau, Xiangcheng County, Ganzi Tibetan Autonomous Prefecture, Sichuan, 626000, China
| | - Ping Dong
- Agriculture and Animal Husbandry Rural and Science and Technology Bureau, Xiangcheng County, Ganzi Tibetan Autonomous Prefecture, Sichuan, 626000, China
| | - Muhammed Walugembe
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA 50011, USA
| | - Boniface B Kayang
- Department of Animal Science, University of Ghana, Legon, Accra 233, Ghana
| | - Amandus P Muhairwa
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3000 Chuo Kikuu, Morogoro, Tanzania
| | - Huaijun Zhou
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Haibing Tong
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China.
| |
Collapse
|
9
|
Habimana R, Ngeno K, Okeno TO, Hirwa CDA, Keambou Tiambo C, Yao NK. Genome-Wide Association Study of Growth Performance and Immune Response to Newcastle Disease Virus of Indigenous Chicken in Rwanda. Front Genet 2021; 12:723980. [PMID: 34745207 PMCID: PMC8570395 DOI: 10.3389/fgene.2021.723980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
A chicken genome has several regions with quantitative trait loci (QTLs). However, replication and confirmation of QTL effects are required particularly in African chicken populations. This study identified single nucleotide polymorphisms (SNPs) and putative genes responsible for body weight (BW) and antibody response (AbR) to Newcastle disease (ND) in Rwanda indigenous chicken (IC) using genome-wide association studies (GWAS). Multiple testing was corrected using chromosomal false detection rates of 5 and 10% for significant and suggestive thresholds, respectively. BioMart data mining and variant effect predictor tools were used to annotate SNPs and candidate genes, respectively. A total of four significant SNPs (rs74098018, rs13792572, rs314702374, and rs14123335) significantly (p ≤ 7.6E-5) associated with BW were identified on chromosomes (CHRs) 8, 11, and 19. In the vicinity of these SNPs, four genes such as pre-B-cell leukaemia homeobox 1 (PBX1), GPATCH1, MPHOSPH6, and MRM1 were identified. Four other significant SNPs (rs314787954, rs13623466, rs13910430, and rs737507850) all located on chromosome 1 were strongly (p ≤ 7.6E-5) associated with chicken antibody response to ND. The closest genes to these four SNPs were cell division cycle 16 (CDC16), zinc finger, BED-type containing 1 (ZBED1), myxovirus (influenza virus) resistance 1 (MX1), and growth factor receptor bound protein 2 (GRB2) related adaptor protein 2 (GRAP2). Besides, other SNPs and genes suggestively (p ≤ 1.5E-5) associated with BW and antibody response to ND were reported. This work offers a useful entry point for the discovery of causative genes accountable for essential QTLs regulating BW and antibody response to ND traits. Results provide auspicious genes and SNP-based markers that can be used in the improvement of growth performance and ND resistance in IC populations based on gene-based and/or marker-assisted breeding selection.
Collapse
Affiliation(s)
- Richard Habimana
- College of Agriculture, Animal Science and Veterinary Medicine, University of Rwanda, Kigali, Rwanda.,Animal Breeding and Genomics Group, Department of Animal Science, Egerton University, Egerton, Kenya
| | - Kiplangat Ngeno
- Animal Breeding and Genomics Group, Department of Animal Science, Egerton University, Egerton, Kenya
| | - Tobias Otieno Okeno
- Animal Breeding and Genomics Group, Department of Animal Science, Egerton University, Egerton, Kenya
| | | | - Christian Keambou Tiambo
- Centre for Tropical Livestock Genetics and Health, International Livestock Research Institute, Nairobi, Kenya
| | - Nasser Kouadio Yao
- Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| |
Collapse
|
10
|
Sustainable intensification of indigenous village chicken production system: matching the genotype with the environment. Trop Anim Health Prod 2021; 53:337. [PMID: 34021847 DOI: 10.1007/s11250-021-02773-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
The multi-purpose indigenous village chickens (IVCs) are kept in low- and middle-income countries. IVCs are hardy and are resilient to disease, hostile environment, global warming, and climate change. The IVCs are a little impacted by anthropogenic effects; consequently, they possess high genetic and phenotypic diversity. Likewise, the genetic structure of IVCs is principally shaped by natural selection, which enables them to accumulate high genetic polymorphism and to adaptively radiate. Regardless of this, the genetic wealth of IVCs has been eroded by indiscriminate crossbreeding. Emerging infectious and non-infectious diseases, flawed assumptions, predation, inadequate nutrition, poorly maintained night enclosures, and underdeveloped market infrastructure, and the overlooked multiple-use values and unique attributes of IVCs have threatened their mere survival. The IVCs lay a few eggs and produce less meat, which cannot meet the growing (existing) demand. However, the demand for IVC products is growing attributable to the flavor and texture of eggs and meat, and they are well-aligned with the subsistence farming system. The several use values and ecosystem services provided by IVCs have been increasingly realized. Enhanced production can be attained through sustainable use of local (genetic) resources and by scaling up and out best practices. Genetic improvement needs to mainly rely upon IVC genetic resources and should have to match the genotype with the environment. Moreover, it has to maintain the genetic polymorphism that has been accumulated for time immemorial to respond to unanticipated changes in the production system and consumers' demand. In this review, enhanced management, selection strategies, and genetic crosses including the crossing of commercial chickens with red junglefowl have been proposed to sustainably intensify the IVC production system.
Collapse
|
11
|
Mushi JR, Chiwanga GH, Amuzu-Aweh EN, Walugembe M, Max RA, Lamont SJ, Kelly TR, Mollel EL, Msoffe PL, Dekkers J, Gallardo R, Zhou H, Muhairwa AP. Phenotypic variability and population structure analysis of Tanzanian free-range local chickens. BMC Vet Res 2020; 16:360. [PMID: 32993651 PMCID: PMC7523039 DOI: 10.1186/s12917-020-02541-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/25/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Free-range local chickens (FRLC) farming is an important activity in Tanzania, however, they have not been well-characterized. This study aimed to phenotypically characterize three Tanzanian FRLCs and to determine their population structure. A total of 389 mature breeder chickens (324 females and 65 males) from three popular Tanzanian FRLC ecotypes (Kuchi, Morogoro-medium and Ching'wekwe) were used for the phenotypic characterization. Progenies of these chickens were utilized to assess population structure. The ecotypes were collected from four geographical zones across Tanzania: Lake, Central, Northern and Coastal zones. Body weights and linear measurements were obtained from the mature breeders, including body, neck, shanks, wingspan, chest girth, and shank girth. Descriptive statistics were utilized to characterize the chickens. Correlations between the linear measurements and differences among the means of measured linear traits between ecotypes and between sexes were assessed. A total of 1399 progeny chicks were genotyped using a chicken 600 K high density single nucleotide polymorphism (SNP) panel for determination of population structure. RESULTS The means for most traits were significantly higher in Kuchi relative to Ching'wekwe and Morogoro-medium. However, shank length and shank girth were similar between Kuchi and Morogoro-medium females. All traits were correlated with the exception of shank girth in Morogoro-medium. Admixture analyses revealed that Morogoro-medium and Ching'wekwe clustered together as one population, separate from Kuchi. CONCLUSIONS Phenotypic traits could be used to characterize FRLCs, however, there were variations in traits among individuals within ecotypes; therefore, complementary genomic methods should be considered to improve the characterization for selective breeding.
Collapse
Affiliation(s)
- James R Mushi
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Gaspar H Chiwanga
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | - Muhammed Walugembe
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Robert A Max
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Terra R Kelly
- School of Veterinary Medicine, University of California, Davis, 95616, USA
| | - Esther L Mollel
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Peter L Msoffe
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jack Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Rodrigo Gallardo
- School of Veterinary Medicine, University of California, Davis, 95616, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, 95616, USA
| | - Amandus P Muhairwa
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania.
| |
Collapse
|
12
|
Transcriptome Analysis Reveals Inhibitory Effects of Lentogenic Newcastle Disease Virus on Cell Survival and Immune Function in Spleen of Commercial Layer Chicks. Genes (Basel) 2020; 11:genes11091003. [PMID: 32859030 PMCID: PMC7565929 DOI: 10.3390/genes11091003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
As a major infectious disease in chickens, Newcastle disease virus (NDV) causes considerable economic losses in the poultry industry, especially in developing countries where there is limited access to effective vaccination. Therefore, enhancing resistance to the virus in commercial chickens through breeding is a promising way to promote poultry production. In this study, we investigated gene expression changes at 2 and 6 days post inoculation (dpi) at day 21 with a lentogenic NDV in a commercial egg-laying chicken hybrid using RNA sequencing analysis. By comparing NDV-challenged and non-challenged groups, 526 differentially expressed genes (DEGs) (false discovery rate (FDR) < 0.05) were identified at 2 dpi, and only 36 at 6 dpi. For the DEGs at 2 dpi, Ingenuity Pathway Analysis predicted inhibition of multiple signaling pathways in response to NDV that regulate immune cell development and activity, neurogenesis, and angiogenesis. Up-regulation of interferon induced protein with tetratricopeptide repeats 5 (IFIT5) in response to NDV was consistent between the current and most previous studies. Sprouty RTK signaling antagonist 1 (SPRY1), a DEG in the current study, is in a significant quantitative trait locus associated with virus load at 6 dpi in the same population. These identified pathways and DEGs provide potential targets to further study breeding strategy to enhance NDV resistance in chickens.
Collapse
|
13
|
Walugembe M, Amuzu-Aweh EN, Botchway PK, Naazie A, Aning G, Wang Y, Saelao P, Kelly T, Gallardo RA, Zhou H, Lamont SJ, Kayang BB, Dekkers JCM. Genetic Basis of Response of Ghanaian Local Chickens to Infection With a Lentogenic Newcastle Disease Virus. Front Genet 2020; 11:739. [PMID: 32849779 PMCID: PMC7402339 DOI: 10.3389/fgene.2020.00739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Newcastle disease (ND) is a global threat to domestic poultry, especially in rural areas of Africa and Asia, where the loss of entire backyard local chicken flocks often threatens household food security and income. To investigate the genetics of Ghanaian local chicken ecotypes to Newcastle disease virus (NDV), in this study, three popular Ghanaian chicken ecotypes (regional populations) were challenged with a lentogenic NDV strain at 28 days of age. This study was conducted in parallel with a similar study that used three popular Tanzanian local chicken ecotypes and after two companion studies in the United States, using Hy-line Brown commercial laying birds. In addition to growth rate, NDV response traits were measured following infection, including anti-NDV antibody levels [pre-infection and 10 days post-infection (dpi)], and viral load (2 and 6 dpi). Genetic parameters were estimated, and two genome-wide association study analysis methods were used on data from 1,440 Ghanaian chickens that were genotyped on a chicken 600K Single Nucleotide Polymorphism (SNP) chip. Both Ghana and Tanzania NDV challenge studies revealed moderate to high (0.18 – 0.55) estimates of heritability for all traits, except viral clearance where the heritability estimate was not different from zero for the Tanzanian ecotypes. For the Ghana study, 12 quantitative trait loci (QTL) for growth and/or response to NDV from single-SNP analyses and 20 genomic regions that explained more than 1% of genetic variance using the Bayes B method were identified. Seven of these windows were also identified as having at least one significant SNP in the single SNP analyses for growth rate, anti-NDV antibody levels, and viral load at 2 and 6 dpi. An important gene for growth during stress, CHORDC1 associated with post-infection growth rate was identified as a positional candidate gene, as well as other immune related genes, including VAV2, IL12B, DUSP1, and IL17B. The QTL identified in the Ghana study did not overlap with those identified in the Tanzania study. However, both studies revealed QTL with genes vital for growth and immune response during NDV challenge. The Tanzania parallel study revealed an overlapping QTL on chromosome 24 for viral load at 6 dpi with the US NDV study in which birds were challenged with NDV under heat stress. This QTL region includes genes related to immune response, including TIRAP, ETS1, and KIRREL3. The moderate to high estimates of heritability and the identified QTL suggest that host response to NDV of local African chicken ecotypes can be improved through selective breeding to enhance increased NDV resistance and vaccine efficacy.
Collapse
Affiliation(s)
- Muhammed Walugembe
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Esinam N Amuzu-Aweh
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Princess K Botchway
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Augustine Naazie
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - George Aning
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Ying Wang
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Perot Saelao
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Terra Kelly
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States.,School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Rodrigo A Gallardo
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Huaijun Zhou
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Boniface B Kayang
- Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of Ghana, Accra, Ghana
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Feed the Future Innovation Lab for Genomics to Improve Poultry, Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Deist MS, Gallardo RA, Dekkers JCM, Zhou H, Lamont SJ. Novel Combined Tissue Transcriptome Analysis After Lentogenic Newcastle Disease Virus Challenge in Inbred Chicken Lines of Differential Resistance. Front Genet 2020; 11:11. [PMID: 32117434 PMCID: PMC7013128 DOI: 10.3389/fgene.2020.00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Disease has large negative impacts on poultry production. A more comprehensive understanding of host-pathogen interaction can lead to new and improved strategies to maintain health. In particular, host genetic factors can lead to a more effective response to pathogens, hereafter termed resistance. Fayoumi and Leghorn chicken lines have demonstrated relative resistance and susceptibility, respectively, to the Newcastle disease virus (NDV) vaccine strain and many other pathogens. This biological model was used to better understand the host response to a vaccine strain of NDV across three tissues and time points, using RNA-seq. Analyzing the Harderian gland, trachea, and lung tissues together using weighted gene co-expression network analysis (WGCNA) identified important genes that were co-expressed and associated with parameters including: genetic line, days post-infection (dpi), challenge status, sex, and tissue. Pathways and driver genes, such as EIF2AK2, MPEG1, and TNFSF13B, associated with challenge status, dpi, and genetic line were of particular interest as candidates for disease resistance. Overall, by jointly analyzing the three tissues, this study identified genes and gene networks that led to a more comprehensive understanding of the whole animal response to lentogenic NDV than that obtained by analyzing the tissues individually.
Collapse
Affiliation(s)
- Melissa S Deist
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Rodrigo A Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|