1
|
Wang H, Zhao P, He Y, Su Y, Zhou X, Guo H. Transcriptome and miRNAs Profiles Reveal Regulatory Network and Key Regulators of Secondary Xylem Formation in "84K" Poplar. Int J Mol Sci 2023; 24:16438. [PMID: 38003631 PMCID: PMC10671414 DOI: 10.3390/ijms242216438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Secondary xylem produced by stem secondary growth is the main source of tree biomass and possesses great economic and ecological value in papermaking, construction, biofuels, and the global carbon cycle. The secondary xylem formation is a complex developmental process, and the underlying regulatory networks and potential mechanisms are still under exploration. In this study, using hybrid poplar (Populus alba × Populus glandulosa clone 84K) as a model system, we first ascertained three representative stages of stem secondary growth and then investigated the regulatory network of secondary xylem formation by joint analysis of transcriptome and miRNAs. Notably, 7507 differentially expressed genes (DEGs) and 55 differentially expressed miRNAs (DEMs) were identified from stage 1 without initiating secondary growth to stage 2 with just initiating secondary growth, which was much more than those identified from stage 2 to stage 3 with obvious secondary growth. DEGs encoding transcription factors and lignin biosynthetic enzymes and those associated with plant hormones were found to participate in the secondary xylem formation. MiRNA-target analysis revealed that a total of 85 DEMs were predicted to have 2948 putative targets. Among them, PagmiR396d-PagGRFs, PagmiR395c-PagGA2ox1/PagLHW/PagSULTR2/PagPolyubiquitin 1, PagmiR482d-PagLAC4, PagmiR167e-PagbHLH62, and PagmiR167f/g/h-PagbHLH110 modules were involved in the regulating cambial activity and its differentiation into secondary xylem, cell expansion, secondary cell wall deposition, and programmed cell death. Our results give new insights into the regulatory network and mechanism of secondary xylem formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Huihong Guo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (H.W.); (P.Z.); (Y.H.); (Y.S.); (X.Z.)
| |
Collapse
|
2
|
Ji P, Lin M, Chen M, Kashif MH, Fan Y, Ali T, Dai R, Peng C, Wang Z, Liu Z. Caffeoyl-coenzyme A O-methyltransferase mediates regulation of carbon flux fluctuations during phenylpropenes and lignin biosynthesis in the vegetative organ roots of Asarum sieboldii Miq. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107855. [PMID: 37433236 DOI: 10.1016/j.plaphy.2023.107855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/27/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023]
Abstract
Asarum sieboldii Miq. possesses remarkable medicinal value due to its essential oil enriched with phenylpropenes (e.g., methyleugenol and safrole). Although the biosynthesis of phenylpropenes shares a common pathway with lignin, the regulation mechanisms in carbon flux allocation between them are unclear. This study is the first to genetically verify the carbon flux regulation mechanism in A. sieboldii roots. We regulated the expression of Caffeoyl-coenzyme A O-methyltransferase (CCoAOMT), an essential enzyme in the common pathway, to investigate carbon flux allocation in vegetative organs. Here, the lignin and phenylpropene content fluctuation was analyzed by wet chemistry and GC-MS methods. A bona fide CCoAOMT gene from A. sieboldii was firstly cloned and verified. Preliminary heterologous expression validation in transgenic Arabidopsis thaliana showed that RNAi-induced CCoAOMT down-regulation significantly decreased lignin content by 24% and increased the S/G ratio by 30%; however, AsCCoAOMT over-expression in A. thaliana resulted in a 40% increase in lignin content and a 20% decrease in the S/G ratio when compared to the wild type. Similar trends were noted in homologous transformation in A. sieboldii, although the variations were not conspicuous. Nevertheless, the transgenic A. sieboldii plants displayed substantial differences in the level of phenylpropene compounds methyleugenol and safrole leading to a 168% increase in the methyleugenol/safrole ratio in the over-expression line and a 73% reduction in RNAi-suppression line. These findings suggest that the biosynthesis of phenylpropene constituents methyleugenol and safrole seems to be prioritized over lignin. Furthermore, this study indicated that suppression of AsCCoAOMT resulted in marked root susceptibility to pathogenic fungal disease, implying a significant additional role of CCoAOMT in protecting plant vegetative parts from diseases. Overall, the present study provides important references and suggests that future research should be aimed at elucidating the detailed mechanisms of the carbon flux allocation between phenylpropenes and lignin biosynthesis, as well as the disease resistance competency.
Collapse
Affiliation(s)
- Pingping Ji
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Maoyi Lin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengying Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Yuling Fan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tahir Ali
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruixian Dai
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhiqing Wang
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Zhong Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Comparative Multi-Omics Analysis Reveals Lignin Accumulation Affects Peanut Pod Size. Int J Mol Sci 2022; 23:ijms232113533. [DOI: 10.3390/ijms232113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Pod size is one of the important factors affecting peanut yield. However, the metabolites relating to pod size and their biosynthesis regulatory mechanisms are still unclear. In the present study, two peanut varieties (Tif and Lps) with contrasting pod sizes were used for a comparative metabolome and transcriptome analysis. Developing peanut pods were sampled at 10, 20 and 30 days after pegging (DAP). A total of 720 metabolites were detected, most of which were lipids (20.3%), followed by phenolic acids (17.8%). There were 43, 64 and 99 metabolites identified as differentially accumulated metabolites (DAMs) at 10, 20 and 30 DAP, respectively, and flavonoids were the major DAMs between Tif and Lps at all three growth stages. Multi-omics analysis revealed that DAMs and DEGs (differentially expressed genes) were significantly enriched in the phenylpropanoid biosynthesis (ko00940) pathway, the main pathway of lignin biosynthesis, in each comparison group. The comparisons of the metabolites in the phenylpropanoid biosynthesis pathway accumulating in Tif and Lps at different growth stages revealed that the accumulation of p-coumaryl alcohol (H-monolignol) in Tif was significantly greater than that in Lps at 30 DAP. The differential expression of gene-LOC112771695, which is highly correlated with p-coumaryl alcohol and involved in the biosynthesis of monolignols, between Tif and Lps might explain the differential accumulation of p-coumaryl alcohol. The content of H-lignin in genetically diverse peanut varieties demonstrated that H-lignin content affected peanut pod size. Our findings would provide insights into the metabolic factors influencing peanut pod size and guidance for the genetic improvement of the peanut.
Collapse
|
4
|
Hu H, Guo Z, Yang J, Cui J, Zhang Y, Xu J. Transcriptome and microRNA Sequencing Identified miRNAs and Target Genes in Different Developmental Stages of the Vascular Cambium in Cryptomeria fortunei Hooibrenk. FRONTIERS IN PLANT SCIENCE 2021; 12:751771. [PMID: 34868137 PMCID: PMC8638621 DOI: 10.3389/fpls.2021.751771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 05/15/2023]
Abstract
Cryptomeria fortunei Hooibrenk is an important fast-growing coniferous timber species that is widely used in landscaping. Recently, research on timber quality has gained substantial attention in the field of tree breeding. Wood is the secondary xylem formed by the continuous inward division and differentiation of the vascular cambium; therefore, the development of the vascular cambium is particularly important for wood quality. In this study, we analyzed the transcriptomes of the cambial zone in C. fortunei during different developmental stages using Illumina HiSeq sequencing, focusing on general transcriptome and microRNA (miRNA) data. We performed functional annotation of the differentially expressed genes (DEGs) in the different stages identified by transcriptome sequencing and generated 15 miRNA libraries yielding 4.73 Gb of clean reads. The most common length of the filtered miRNAs was 21nt, accounting for 33.1% of the total filtered reads. We annotated a total of 32 known miRNA families. Some miRNAs played roles in hormone signal transduction (miR159, miR160, and miR166), growth and development (miR166 and miR396), and the coercion response (miR394 and miR395), and degradome sequencing showed potential cleavage sites between miRNAs and target genes. Differential expression of miRNAs and target genes and functional validation of the obtained transcriptome and miRNA data provide a theoretical basis for further elucidating the molecular mechanisms of cellular growth and differentiation, as well as wood formation in the vascular cambium, which will help improve the wood quality of C. fortunei.
Collapse
Affiliation(s)
- Hailiang Hu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhenhao Guo
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Yang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jiebing Cui
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yingting Zhang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jin Xu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
5
|
Yao T, Feng K, Xie M, Barros J, Tschaplinski TJ, Tuskan GA, Muchero W, Chen JG. Phylogenetic Occurrence of the Phenylpropanoid Pathway and Lignin Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:704697. [PMID: 34484267 PMCID: PMC8416159 DOI: 10.3389/fpls.2021.704697] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/19/2021] [Indexed: 05/19/2023]
Abstract
The phenylpropanoid pathway serves as a rich source of metabolites in plants and provides precursors for lignin biosynthesis. Lignin first appeared in tracheophytes and has been hypothesized to have played pivotal roles in land plant colonization. In this review, we summarize recent progress in defining the lignin biosynthetic pathway in lycophytes, monilophytes, gymnosperms, and angiosperms. In particular, we review the key structural genes involved in p-hydroxyphenyl-, guaiacyl-, and syringyl-lignin biosynthesis across plant taxa and consider and integrate new insights on major transcription factors, such as NACs and MYBs. We also review insight regarding a new transcriptional regulator, 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, canonically identified as a key enzyme in the shikimate pathway. We use several case studies, including EPSP synthase, to illustrate the evolution processes of gene duplication and neo-functionalization in lignin biosynthesis. This review provides new insights into the genetic engineering of the lignin biosynthetic pathway to overcome biomass recalcitrance in bioenergy crops.
Collapse
Affiliation(s)
- Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Kai Feng
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Meng Xie
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Jaime Barros
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
6
|
Selection and Optimization of Reference Genes for MicroRNA Expression Normalization by qRT-PCR in Chinese Cedar ( Cryptomeria fortunei) under Multiple Stresses. Int J Mol Sci 2021; 22:ijms22147246. [PMID: 34298866 PMCID: PMC8304282 DOI: 10.3390/ijms22147246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/22/2023] Open
Abstract
MicroRNA (miRNA) expression analysis is very important for investigating its functions. To date, no research on reference genes (RGs) for miRNAs in gymnosperms, including Cryptomeria fortunei, has been reported. Here, ten miRNAs (i.e., pab-miR159a, cln-miR162, cas-miR166d, pab-miR395b, ppt-miR894, cln-miR6725, novel1, novel6, novel14 and novel16) and three common RGs (U6, 5S and 18S) were selected as candidate RGs. qRT-PCR was used to analyse their expressions in C. fortunei under various experimental conditions, including multiple stresses (cold, heat, drought, salt, abscisic acid and gibberellin) and in various tissues (roots, stems, tender needles, cones and seeds). Four algorithms (delta Ct, geNorm, NormFinder and BestKeeper) were employed to assess the stability of candidate RG expression; the geometric mean and RefFinder program were used to comprehensively evaluate RG stability. According to the results, novel16, cln-miR6725, novel1 and U6 were the most stable RGs for studying C. fortunei miRNA expression. In addition, the expression of three target miRNAs (aly-miR164c-5p, aly-miR168a-5p and smo-miR396) was examined to verify that the selected RGs are suitable for miRNA expression normalisation. This study may aid further investigations of miRNA expression/function in the response of C. fortunei to abiotic stress and provides an important basis for the standardisation of miRNA expression in other gymnosperm species.
Collapse
|
7
|
Zhang Y, Zhu L, Xue J, Yang J, Hu H, Cui J, Xu J. Selection and Verification of Appropriate Reference Genes for Expression Normalization in Cryptomeria fortunei under Abiotic Stress and Hormone Treatments. Genes (Basel) 2021; 12:genes12060791. [PMID: 34064253 PMCID: PMC8224294 DOI: 10.3390/genes12060791] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptomeria fortunei has become one of the main timber afforestation species in subtropical high-altitude areas of China due to its fast growth, good material quality, and strong adaptability, showing broad application prospects. Quantitative real-time PCR (qRT-PCR) is the most accurate and widely used gene expression evaluation technique, and selecting appropriate reference genes (RGs) is essential for normalizing qRT-PCR results. However, suitable RGs for gene expression normalization in C. fortunei have not been reported. Here, we tested the expression stability for 12 RGs in C. fortunei under various experimental conditions (simulated abiotic stresses (cold, heat, drought, and salinity) and hormone treatments (methyl jasmonate, abscisic acid, salicylic acid, and gibberellin) and in different tissues (stems, tender needles, needles, cones, and seeds) using four algorithms (delta Ct, geNorm, NormFinder, and BestKeeper). Then, geometric mean rankings from these algorithms and the RefFinder program were used to comprehensively evaluate RG stability. The results indicated CYP, actin, UBC, and 18S as good choices for studying C. fortunei gene expression. qRT-PCR analysis of the expression patterns of three target genes (CAT and MAPK1/6) further verified that the selected RGs were suitable for gene expression normalization. This study provides an important basis for C. fortunei gene expression standardization and quantification.
Collapse
Affiliation(s)
- Yingting Zhang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (L.Z.); (J.X.); (J.Y.); (H.H.); (J.C.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Lijuan Zhu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (L.Z.); (J.X.); (J.Y.); (H.H.); (J.C.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jinyu Xue
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (L.Z.); (J.X.); (J.Y.); (H.H.); (J.C.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Junjie Yang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (L.Z.); (J.X.); (J.Y.); (H.H.); (J.C.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Hailiang Hu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (L.Z.); (J.X.); (J.Y.); (H.H.); (J.C.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jiebing Cui
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (L.Z.); (J.X.); (J.Y.); (H.H.); (J.C.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Xu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (L.Z.); (J.X.); (J.Y.); (H.H.); (J.C.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-25-8542-7319
| |
Collapse
|
8
|
Liang C, Wan T, Wu R, Zhao M, Zhao Y, Cai Y. Resistance analysis of cherry rootstock 'CDR-1' (Prunus mahaleb) to crown gall disease. BMC PLANT BIOLOGY 2020; 20:516. [PMID: 33183241 PMCID: PMC7661173 DOI: 10.1186/s12870-020-02673-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Crown gall disease, caused by the pathogenic bacterium Agrobacterium tumefaciens, is responsible for extensive economic losses in orchards. Cherry rootstock 'CDR-1' (Prunus mahaleb) shows high resistance but the mechanism remains unclear. Here, we examined the morphology of pathogen-infected root neck surface, determined the activity of 10 defense-related enzymes and the content of salicylic acid (SA) and jasmonic acid (JA), and also applied transcriptome analysis, transient expression and transgenic verification to explore the crown gall resistance genes in 'CDR-1' plants. RESULTS In our study, peroxidase increased in the first 10 days, while phenylalanine ammonialyase and lipoxygenase increased in the first 15 days post-infection. Four key enzymes in the AsA-GSH cycle also responded, to a certain extent; although JA content increased significantly after the treatment, the SA content did not. In a follow-up transcriptome analysis, the differentially expressed genes Pm4CL2, PmCYP450, PmHCT1, PmHCT2, and PmCAD were up-regulated. Based on the above results, we focused on the lignin biosynthetic pathway, and further measured lignin content, and found it increased significantly. The Pm4CL2 gene was used to conduct transient expression and transgenic experiments to verify its function in crown gall disease resistance. It showed the relative expression of the treatment group was almost 14-fold that of the control group at 12 h post-treatment. After the infection treatment, clear signs of resistance were found in the transgenic lines; this indicated that under the higher expression level and earlier activation of Pm4CL2, plant resistance was enhanced. CONCLUSIONS The crown gall resistance of 'CDR-1' is likely related to the lignin biosynthetic pathway, in which Pm4CL2 functions crucially during the plant defense response to the pathogen A. tumefaciens. The results thus offer novel insights into the defense responses and resistance mechanism of cherry rootstock 'CDR-1' against crown gall disease.
Collapse
Affiliation(s)
- Chenglin Liang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| | - Tian Wan
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| | - Rendun Wu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| | - Mei Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| | - Yue Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| | - Yuliang Cai
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| |
Collapse
|
9
|
Transcriptomic Profiling of Cryptomeria fortunei Hooibrenk Vascular Cambium Identifies Candidate Genes Involved in Phenylpropanoid Metabolism. FORESTS 2020. [DOI: 10.3390/f11070766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cryptomeria fortunei Hooibrenk (Chinese cedar) is a coniferous tree from southern China that has an important function in landscaping and timber production. Lignin is one of the key components of secondary cell walls, which have a crucial role in conducting water and providing mechanical support for the upward growth of plants. It is mainly biosynthesized via the phenylpropanoid metabolic pathway, of which the molecular mechanism remains so far unresolved in C. fortunei. In order to obtain further insight into this pathway, we performed transcriptome sequencing of the C. fortunei cambial zone at 5 successive growth stages. We generated 78,673 unigenes from transcriptome data, of which 45,214 (57.47%) were successfully annotated in the non-redundant protein database (NR). A total of 8975 unigenes were identified to be significantly differentially expressed between Sample_B and Sample_A after analyzing their expression profiles. Of the differentially expressed genes (DEGs), 6817 (75.96%) and 2158 (24.04%) were up- and down-regulated, respectively. 83 DEGs were involved in phenylpropanoid metabolism, 37 DEGs that encoded v-Myb avian myeloblastosis viral oncogene homolog (MYB) transcription factor (TF), and many candidates that encoded lignin synthesizing enzymes. These findings contribute to understanding the expression pattern of C. fortunei cambial zone transcriptome. Furthermore, our results provide additional insight towards understanding the molecular mechanisms of wood formation in C. fortunei.
Collapse
|