1
|
Gao Y, Shi X, Chang Y, Li Y, Xiong X, Liu H, Li M, Li W, Zhang X, Fu Z, Xue Y, Tang J. Mapping the gene of a maize leaf senescence mutant and understanding the senescence pathways by expression analysis. PLANT CELL REPORTS 2023; 42:1651-1663. [PMID: 37498331 DOI: 10.1007/s00299-023-03051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
KEY MESSAGES Narrowing down to a single putative target gene behind a leaf senescence mutant and constructing the regulation network by proteomic method. Leaf senescence mutant is an important resource for exploring molecular mechanism of aging. To dig for potential modulation networks during maize leaf aging process, we delimited the gene responsible for a premature leaf senescence mutant els5 to a 1.1 Mb interval in the B73 reference genome using a BC1F1 population with 40,000 plants, and analyzed the leaf proteomics of the mutant and its near-isogenic wild type line. A total of 1355 differentially accumulated proteins (DAP) were mainly enriched in regulation pathways such as "photosynthesis", "ribosome", and "porphyrin and chlorophyll metabolism" by the KEGG pathway analysis. The interaction networks constructed by incorporation of transcriptome data showed that ZmELS5 likely repaired several key factors in the photosynthesis system. The putative candidate proteins for els5 were proposed based on DAPs in the fined QTL mapping interval. These results provide fundamental basis for cloning and functional research of the els5 gene, and new insights into the molecular mechanism of leaf senescence in maize.
Collapse
Affiliation(s)
- Yong Gao
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xia Shi
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yongyuan Chang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yingbo Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuehang Xiong
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongmei Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengyuan Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weihua Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuehai Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiyuan Fu
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yadong Xue
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Ninkuu V, Liu Z, Sun X. Genetic regulation of nitrogen use efficiency in Gossypium spp. PLANT, CELL & ENVIRONMENT 2023; 46:1749-1773. [PMID: 36942358 DOI: 10.1111/pce.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
Cotton (Gossypium spp.) is the most important fibre crop, with desirable characteristics preferred for textile production. Cotton fibre output relies heavily on nitrate as the most important source of inorganic nitrogen (N). However, nitrogen dynamics in extreme environments limit plant growth and lead to yield loss and pollution. Therefore, nitrogen use efficiency (NUE), which involves the utilisation of the 'right rate', 'right source', 'right time', and 'right place' (4Rs), is key for efficient N management. Recent omics techniques have genetically improved NUE in crops. We herein highlight the mechanisms of N uptake and assimilation in the vegetative and reproductive branches of the cotton plant while considering the known and unknown regulatory factors. The phylogenetic relationships among N transporters in four Gossypium spp. have been reviewed. Further, the N regulatory genes that participate in xylem transport and phloem loading are also discussed. In addition, the functions of microRNAs and transcription factors in modulating the expression of target N regulatory genes are highlighted. Overall, this review provides a detailed perspective on the complex N regulatory mechanism in cotton, which would accelerate the research toward improving NUE in crops.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Wang L, Doan PPT, Chuong NN, Lee HY, Kim JH, Kim J. Comprehensive transcriptomic analysis of age-, dark-, and salt-induced senescence reveals underlying mechanisms and key regulators of leaf senescence in Zoysia japonica. FRONTIERS IN PLANT SCIENCE 2023; 14:1170808. [PMID: 37324695 PMCID: PMC10265201 DOI: 10.3389/fpls.2023.1170808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 06/17/2023]
Abstract
The lawn grass Zoysia japonica is widely cultivated for its ornamental and recreational value. However, its green period is subject to shortening, which significantly decreases the economic value of Z. japonica, especially for large cultivations. Leaf senescence is a crucial biological and developmental process that significantly influences the lifespan of plants. Moreover, manipulation of this process can improve the economic value of Z. japonica by extending its greening period. In this study, we conducted a comparative transcriptomic analysis using high-throughput RNA sequencing (RNA-seq) to investigate early senescence responses triggered by age, dark, and salt. Gene set enrichment analysis results indicated that while distinct biological processes were involved in each type of senescence response, common processes were also enriched across all senescence responses. The identification and validation of differentially expressed genes (DEGs) via RNA-seq and quantitative real-time PCR provided up- and down-regulated senescence markers for each senescence and putative senescence regulators that trigger common senescence pathways. Our findings revealed that the NAC, WRKY, bHLH, and ARF transcription factor (TF) groups are major senescence-associated TF families that may be required for the transcriptional regulation of DEGs during leaf senescence. In addition, we experimentally validated the senescence regulatory function of seven TFs including ZjNAP, ZjWRKY75, ZjARF2, ZjNAC1, ZjNAC083, ZjARF1, and ZjPIL5 using a protoplast-based senescence assay. This study provides new insight into the molecular mechanisms underlying Z. japonica leaf senescence and identifies potential genetic resources for enhancing its economic value by prolonging its green period.
Collapse
Affiliation(s)
- Lanshuo Wang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Phan Phuong Thao Doan
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Nguyen Nguyen Chuong
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Hyo-Yeon Lee
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Jin Hee Kim
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Jeongsik Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
- Faculty of Science Education, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
4
|
Qi X, Wan C, Zhang X, Sun W, Liu R, Wang Z, Wang Z, Ling F. Effects of histone methylation modification on low temperature seed germination and growth of maize. Sci Rep 2023; 13:5196. [PMID: 36997660 PMCID: PMC10063631 DOI: 10.1038/s41598-023-32451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Low temperature is a limiting factor of seed germination and plant growth. Although there is a lot information on the response of maize to low temperatures, there is still poorly description of how histone methylation affects maize germination and growth development at low temperatures. In this study, the germination rate and physiological indexes of wild-type maize inbred lines B73 (WT), SDG102 silencing lines (AS), SDG102 overexpressed lines (OE) at germination stage and seedling stage were measured under low temperature stress (4 ℃), and transcriptome sequencing was applied to analyze the differences of gene expression in panicle leaves among different materials. The results showed that the germination rate of WT and OE maize seeds at 4 ℃ was significantly lower than 25 ℃. The content of MDA, SOD and POD of 4 ℃ seeding leaves higher than contrast. Transcriptome sequencing results showed that there were 409 different expression genes (DEGs) between WT and AS, and the DEGs were mainly up-regulated expression in starch and sucrose metabolism and phenylpropanoid biosynthesis. There were 887 DEGs between WT and OE, which were mainly up-regulated in the pathways of plant hormone signal transduction, porphyrin and chlorophyll metabolism. This result could provide a theoretical basis for analyzing the growth and development of maize from the perspective of histone methylation modification.
Collapse
Affiliation(s)
- Xin Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Chang Wan
- Institute of Grassland and Ecology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xing Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Weifeng Sun
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Rui Liu
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhennan Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China.
| | - Fenglou Ling
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Lu J, Sun L, Jin X, Islam MA, Guo F, Tang X, Zhao K, Hao H, Li N, Zhang W, Shi Y, Wang S, Sun D. Analysis of Physiological and Transcriptomic Differences between a Premature Senescence Mutant (GSm) and Its Wild-Type in Common Wheat (Triticum aestivum L.). BIOLOGY 2022; 11:biology11060904. [PMID: 35741425 PMCID: PMC9219967 DOI: 10.3390/biology11060904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Early leaf senescence is an important agronomic trait that affects crop yield and quality. To understand the molecular mechanism of early leaf senescence, a wheat (Triticum aestivum L.) premature leaf senescence mutant (GSm) and its wild type were employed in this study. We compared the physiological characteristics and transcriptome of wheat leaves between the wild type (WT) and the mutant at two-time points. Physiological characteristics and differentially expressed gene (DEG) analysis revealed many genes and metabolic pathways that were closely related to senescence. These results will not only support further gene cloning and functional analysis of GSm, but also facilitate the study of leaf senescence in wheat. Abstract Premature leaf senescence has a profound influence on crop yield and quality. Here, a stable premature senescence mutant (GSm) was obtained from the common wheat (Triticum aestivum L.) cultivar Chang 6878 by mutagenesis with ethyl methanesulfonate. The differences between the GSm mutant and its wild-type (WT) were analyzed in terms of yield characteristics, photosynthetic fluorescence indices, and senescence-related physiological parameters. RNA sequencing was used to reveal gene expression differences between GSm and WT. The results showed that the yield of GSm was considerably lower than that of WT. The net photosynthetic rate, transpiration rate, maximum quantum yield, non-photochemical quenching coefficient, photosynthetic electron transport rate, soluble protein, peroxidase activity, and catalase activity all remarkably decreased in flag leaves of GSm, whereas malondialdehyde content distinctively increased compared with those of WT. The analysis of differentially expressed genes indicated blockade of chlorophyll and carotenoid biosynthesis, accelerated degradation of chlorophyll, and diminished photosynthetic capacity in mutant leaves; brassinolide might facilitate chlorophyll breakdown and consequently accelerate leaf senescence. NAC genes positively regulated the senescence process. Compared with NAC genes, expression of WRKY and MYB genes was induced earlier in the mutant possibly due to increased levels of reactive oxygen species and plant hormones (e.g., brassinolide, salicylic acid, and jasmonic acid), thereby accelerating leaf senescence. Furthermore, the antioxidant system played a role in minimizing oxidative damage in the mutant. These results provides novel insight into the molecular mechanisms of premature leaf senescence in crops.
Collapse
|
6
|
Feng X, Liu L, Li Z, Sun F, Wu X, Hao D, Hao H, Jing HC. Potential interaction between autophagy and auxin during maize leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3554-3568. [PMID: 33684202 PMCID: PMC8446287 DOI: 10.1093/jxb/erab094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 05/04/2023]
Abstract
Leaf senescence is important for crop yield as delaying it can increase the average yield. In this study, population genetics and transcriptomic profiling were combined to dissect its genetic basis in maize. To do this, the progenies of an elite maize hybrid Jidan27 and its parental lines Si-287 (early senescence) and Si-144 (stay-green), as well as 173 maize inbred lines were used. We identified two novel loci and their candidate genes, Stg3 (ZmATG18b) and Stg7 (ZmGH3.8), which are predicted to be members of autophagy and auxin pathways, respectively. Genomic variations in the promoter regions of these two genes were detected, and four allelic combinations existed in the examined maize inbred lines. The Stg3Si-144/Stg7Si-144 allelic combination with lower ZmATG18b expression and higher ZmGH3.8 expression could distinctively delay leaf senescence, increase ear weight and the improved hybrid of NIL-Stg3Si-144/Stg7Si-144 × Si-144 significantly reduced ear weight loss under drought stress, while opposite effects were observed in the Stg3Si-287/Stg7Si-287 combination with a higher ZmATG18b expression and lower ZmGH3.8 expression. Thus, we identify a potential interaction between autophagy and auxin which could modulate the timing of maize leaf senescence.
Collapse
Affiliation(s)
- Xue Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhigang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Dongyun Hao
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130124, China
| | - Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Correspondence: or
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Correspondence: or
| |
Collapse
|
7
|
Gupta R, Jiao S, Zhao S, Meeley RB, Williams RW, Taramino G, Feng D, Li G, Liu J, Allen SM, Simcox KD, Multani DS. The maize premature senesence2 encodes for PHYTOCHROME-DEPENDENT LATE-FLOWERING and its expression modulation improves agronomic traits under abiotic stresses. PLANT DIRECT 2020; 4:e00295. [PMID: 33392436 PMCID: PMC7771657 DOI: 10.1002/pld3.295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Among the various abiotic stresses, water and nitrogen are major stress factors that limit crop productivity worldwide. Since leaf nutrients remobilization during leaf senescence might impact response to abiotic stress in crops, we undertook a forward screen of the Mutator-active approach to identify premature senescence loci in maize. A mutant line isolated from a cross between a Pioneer Brand elite line and a public Mutator-active material, designated premature senescence2 (pre2), expressed leaf senescence during flower initiation. The Pre2 gene encodes PHYTOCHROME-DEPENDENT LATE-FLOWERING (PHL) protein, a nuclear receptor coactivator. The pre2-1 mutant allele was not a null mutation but produced a functional wild-type transcript along with multiple mRNA species of varying lengths resulting from the alternate splicing of the Pre2 gene. The PHL accelerates flowering by suppressing the inhibitory effect of phyB on flowering in Arabidopsis (Endo et al., 2013). The ZmPRE2 polypeptide is highly conserved in plant species and has two identifiable motifs namely SPT20 and MED15. The Spt20 domain, which is a part of the SAGA (Spt-Ada-Gcn5 acetyltransferase) complex, is involved in histone deacetylation and MED15 proteins have nuclear functions in mediating DNA Pol II transcription. The differential spliced mature transcripts in both the pre2 alleles, as a result of transposon interference, were producing truncated proteins that lacked polyglutamine (Q) tract near the C-terminus and might be causative of the premature senescence phenotype in maize. Endogenous gene suppression of ZmPre2 by RNAi improves maize agronomic performance under both water stress and suboptimal nitrogen conditions. The homozygous T-DNA knockout of the pre2 homolog in Arabidopsis (At1G72390; the same insertional allele used by Endo et al., 2013) results in higher biomass, delayed maturity, enhanced tolerance to drought, and improved nitrogen utilization efficiency. The Arabidopsis mutant also showed hypersensitive response to 1 µM ABA (abscisic acid) concentration. These results indicate that the PHL protein plays a direct or indirect role in ABA-dependent drought and N signaling pathways.
Collapse
Affiliation(s)
- Rajeev Gupta
- Corteva AgriscienceJohnstonIAUSA
- Present address:
International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTSIndia
| | | | - Suling Zhao
- Corteva AgriscienceJohnstonIAUSA
- Present address:
Bayer Crop ScienceChesterfieldMOUSA
| | - Robert B. Meeley
- Corteva AgriscienceJohnstonIAUSA
- Present address:
Des MoinesIAUSA
| | | | - Graziana Taramino
- Corteva AgriscienceJohnstonIAUSA
- Present address:
Bayer Crop ScienceChesterfieldMOUSA
| | - Dongsheng Feng
- Corteva AgriscienceJohnstonIAUSA
- Present address:
KekahaHIUSA
| | - Guofu Li
- Corteva AgriscienceJohnstonIAUSA
- Present address:
BellagenQilu Innovalley IncubatorHigh‐Tech Industry Development ZoneJinanShandongChina
| | - Juan Liu
- Corteva AgriscienceJohnstonIAUSA
- Present address:
Gene Therapy ProgramUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Stephen M. Allen
- Corteva AgriscienceJohnstonIAUSA
- Present address:
WilmingtonDEUSA
| | - Kevin D. Simcox
- Corteva AgriscienceJohnstonIAUSA
- Present address:
West Des MoinesIAUSA
| | - Dilbag S. Multani
- Corteva AgriscienceJohnstonIAUSA
- Present address:
Napigen Inc.Delaware Innovation SpaceWilmingtonDEUSA
| |
Collapse
|