1
|
Chen Q, Guo Z, Shi X, Wei M, Fan Y, Zhu J, Zheng T, Wang Y, Kong L, Deng M, Cao X, Wang J, Wei Y, Jiang Q, Jiang Y, Chen G, Zheng Y, Qi P. Increasing the Grain Yield and Grain Protein Content of Common Wheat ( Triticum aestivum) by Introducing Missense Mutations in the Q Gene. Int J Mol Sci 2022; 23:10772. [PMID: 36142679 PMCID: PMC9505668 DOI: 10.3390/ijms231810772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Grain yield (GY) and grain protein content (GPC) are important traits for wheat breeding and production; however, they are usually negatively correlated. The Q gene is the most important domestication gene in cultivated wheat because it influences many traits, including GY and GPC. Allelic variations in the Q gene may positively affect both GY and GPC. Accordingly, we characterized two new Q alleles (Qs1 and Qc1-N8) obtained through ethyl methanesulfonate-induced mutagenesis. Compared with the wild-type Q allele, Qs1 contains a missense mutation in the sequence encoding the first AP2 domain, whereas Qc1-N8 has two missense mutations: one in the sequence encoding the second AP2 domain and the other in the microRNA172-binding site. The Qs1 allele did not significantly affect GPC or other processing quality parameters, but it adversely affected GY by decreasing the thousand kernel weight and grain number per spike. In contrast, Qc1-N8 positively affected GPC and GY by increasing the thousand kernel weight and grain number per spike. Thus, we generated novel germplasm relevant for wheat breeding. A specific molecular marker was developed to facilitate the use of the Qc1-N8 allele in breeding. Furthermore, our findings provide useful new information for enhancing cereal crops via non-transgenic approaches.
Collapse
Affiliation(s)
- Qing Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenru Guo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoli Shi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Meiqiao Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yazhen Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyou Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Zheng Y, He S, Cai W, Shen L, Huang X, Yang S, Huang Y, Lu Q, Wang H, Guan D, He S. CaAIL1 Acts Positively in Pepper Immunity against Ralstonia solanacearum by Repressing Negative Regulators. PLANT & CELL PHYSIOLOGY 2021; 62:1702-1717. [PMID: 34463342 DOI: 10.1093/pcp/pcab125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/09/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
APETALA2 (AP2) subfamily transcription factors participate in plant growth and development, but their roles in plant immunity remain unclear. Here, we discovered that the AP2 transcription factor CaAIL1 functions in immunity against Ralstonia solanacearum infection (RSI) in pepper (Capsicum annuum). CaAIL1 expression was upregulated by RSI, and loss- and gain-of-function assays using virus-induced gene silencing and transient overexpression, respectively, revealed that CaAIL1 plays a positive role in immunity to RSI in pepper. Chromatin immunoprecipitation sequencing (ChIP-seq) uncovered a subset of transcription-factor-encoding genes, including CaRAP2-7, CaGATA17, CaGtf3a and CaTCF25, that were directly targeted by CaAIL1 via their cis-elements, such as GT or AGGCA motifs. ChIP-qPCR and electrophoretic mobility shift assays confirmed these findings. These genes, encoding transcription factors with negative roles in immunity, were repressed by CaAIL1 during pepper response to RSI, whereas genes encoding positive immune regulators such as CaEAS were derepressed by CaAIL1. Importantly, we showed that the atypical EAR motif (LXXLXXLXX) in CaAIL1 is indispensable for its function in immunity. These findings indicate that CaAIL1 enhances the immunity of pepper against RSI by repressing a subset of negative immune regulators during the RSI response through its binding to several cis-elements in their promoters.
Collapse
Affiliation(s)
- Yutong Zheng
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Shicong He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Weiwei Cai
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Xueying Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Yu Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Qiaoling Lu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, No. 15, Shang xia dian Road, Jianxin Town, Cangshan District, Fuzhou, Fujian 350002, China
| |
Collapse
|