1
|
Soares JF, Abreu R, Lima AC, Sousa L, Batista S, Castelo-Branco M, Duarte JV. Task-based functional MRI challenges in clinical neuroscience: Choice of the best head motion correction approach in multiple sclerosis. Front Neurosci 2022; 16:1017211. [PMID: 36570849 PMCID: PMC9768441 DOI: 10.3389/fnins.2022.1017211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Functional MRI (fMRI) is commonly used for understanding brain organization and connectivity abnormalities in neurological conditions, and in particular in multiple sclerosis (MS). However, head motion degrades fMRI data quality and influences all image-derived metrics. Persistent controversies regarding the best correction strategy motivates a systematic comparison, including methods such as scrubbing and volume interpolation, to find optimal correction models, particularly in studies with clinical populations prone to characterize by high motion. Moreover, strategies for correction of motion effects gain more relevance in task-based designs, which are less explored compared to resting-state, have usually lower sample sizes, and may have a crucial role in describing the functioning of the brain and highlighting specific connectivity changes. Methods We acquired fMRI data from 17 early MS patients and 14 matched healthy controls (HC) during performance of a visual task, characterized motion in both groups, and quantitatively compared the most used and easy to implement methods for correction of motion effects. We compared task-activation metrics obtained from: (i) models containing 6 or 24 motion parameters (MPs) as nuisance regressors; (ii) models containing nuisance regressors for 6 or 24 MPs and motion outliers (scrubbing) detected with Framewise Displacement or Derivative or root mean square VARiance over voxelS; and (iii) models with 6 or 24 MPs and motion outliers corrected through volume interpolation. To our knowledge, volume interpolation has not been systematically compared with scrubbing, nor investigated in task fMRI clinical studies in MS. Results No differences in motion were found between groups, suggesting that recently diagnosed MS patients may not present problematic motion. In general, models with 6 MPs perform better than models with 24 MPs, suggesting the 6 MPs as the best trade-off between correction of motion effects and preservation of valuable information. Parsimonious models with 6 MPs and volume interpolation were the best combination for correcting motion in both groups, surpassing the scrubbing methods. A joint analysis regardless of the group further highlighted the value of volume interpolation. Discussion Volume interpolation of motion outliers is an easy to implement technique, which may be an alternative to other methods and may improve the accuracy of fMRI analyses, crucially in clinical studies in MS and other neurological populations.
Collapse
Affiliation(s)
- Júlia F. Soares
- Coimbra Institute for Biomedical Imaging and Translational Research, Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Rodolfo Abreu
- Coimbra Institute for Biomedical Imaging and Translational Research, Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Lima
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Lívia Sousa
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sónia Batista
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research, Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Valente Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research, Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal,*Correspondence: João Valente Duarte,
| |
Collapse
|
2
|
McKechanie AG, Lawrie SM, Whalley HC, Stanfield AC. A functional MRI facial emotion-processing study of autism in individuals with special educational needs. Psychiatry Res Neuroimaging 2022; 320:111426. [PMID: 34911009 DOI: 10.1016/j.pscychresns.2021.111426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
This study aimed to investigate the functional imaging associations of autism in individuals with special educational needs and demonstrate the feasibility of such research. The study included 18 individuals (3 female,15 male; mean age 24.3; mean IQ 69.7) with special educational needs (SEN), of whom 9 met criteria for autism. The task examined the Blood-oxygen-level dependant response to fearful and neutral faces. Individuals in the autism group had 2 clusters of significantly reduced activity centred on the left superior frontal gyrus and left angular gyrus compared to those with SEN alone in response to the fearful faces. In the response to neutral faces, individuals in the autism group also had a cluster of significantly greater activity centred on the right precentral gyrus compared to those with SEN alone. We suggest that autistic characteristics in individuals with SEN are associated with changes in fearful facial emotion processing analogous to those previously reported in autistic individuals without SEN, and who are of average or above average cognitive ability. The finding of enhanced response to neutral facial stimuli needs further investigation, although we speculate this may relate to reports of the experience of 'hyper-mentalisation' in social situations as reported by some autistic individuals.
Collapse
Affiliation(s)
- Andrew G McKechanie
- Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom; Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom.
| | - Stephen M Lawrie
- Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom; Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew C Stanfield
- Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom; Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Marlborough M, Welham A, Jones C, Reckless S, Moss J. Autism spectrum disorder in females with fragile X syndrome: a systematic review and meta-analysis of prevalence. J Neurodev Disord 2021; 13:28. [PMID: 34294028 PMCID: PMC8299695 DOI: 10.1186/s11689-021-09362-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whilst up to 60% of males with fragile X syndrome (FXS) meet criteria for autism spectrum disorder (ASD), the prevalence and nature of ASD in females with FXS remains unclear. METHOD A systematic literature search identified papers reporting ASD prevalence and/or symptomatology in females with FXS. RESULTS AND CONCLUSION Meta-analysis suggested that rates of ASD for females with FXS are reliably higher than for females in the general population (a random effects model estimated weighted average prevalence at 14%, 95% CI 13-18%). Whilst papers highlighted a number of social and repetitive difficulties for females with FXS, characteristic profiles of impairment are not clear. Possible associations between ASD traits and IQ, and between ASD and levels of fragile X mental retardation protein, are suggested, but data are equivocal.
Collapse
Affiliation(s)
- M Marlborough
- School of Psychology, George Davis Centre, University of Leicester, Leicester, UK
| | - A Welham
- School of Psychology, George Davis Centre, University of Leicester, Leicester, UK.
| | - C Jones
- School of Psychology, George Davis Centre, University of Leicester, Leicester, UK
| | - S Reckless
- School of Psychology, George Davis Centre, University of Leicester, Leicester, UK
| | - J Moss
- School of Psychology, George Davis Centre, University of Leicester, Leicester, UK
| |
Collapse
|
4
|
Kessi M, Chen B, Peng J, Yan F, Yang L, Yin F. Calcium channelopathies and intellectual disability: a systematic review. Orphanet J Rare Dis 2021; 16:219. [PMID: 33985586 PMCID: PMC8120735 DOI: 10.1186/s13023-021-01850-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcium ions are involved in several human cellular processes including corticogenesis, transcription, and synaptogenesis. Nevertheless, the relationship between calcium channelopathies (CCs) and intellectual disability (ID)/global developmental delay (GDD) has been poorly investigated. We hypothesised that CCs play a major role in the development of ID/GDD and that both gain- and loss-of-function variants of calcium channel genes can induce ID/GDD. As a result, we performed a systematic review to investigate the contribution of CCs, potential mechanisms underlying their involvement in ID/GDD, advancements in cell and animal models, treatments, brain anomalies in patients with CCs, and the existing gaps in the knowledge. We performed a systematic search in PubMed, Embase, ClinVar, OMIM, ClinGen, Gene Reviews, DECIPHER and LOVD databases to search for articles/records published before March 2021. The following search strategies were employed: ID and calcium channel, mental retardation and calcium channel, GDD and calcium channel, developmental delay and calcium channel. MAIN BODY A total of 59 reports describing 159 cases were found in PubMed, Embase, ClinVar, and LOVD databases. Variations in ten calcium channel genes including CACNA1A, CACNA1C, CACNA1I, CACNA1H, CACNA1D, CACNA2D1, CACNA2D2, CACNA1E, CACNA1F, and CACNA1G were found to be associated with ID/GDD. Most variants exhibited gain-of-function effect. Severe to profound ID/GDD was observed more for the cases with gain-of-function variants as compared to those with loss-of-function. CACNA1E, CACNA1G, CACNA1F, CACNA2D2 and CACNA1A associated with more severe phenotype. Furthermore, 157 copy number variations (CNVs) spanning calcium genes were identified in DECIPHER database. The leading genes included CACNA1C, CACNA1A, and CACNA1E. Overall, the underlying mechanisms included gain- and/ or loss-of-function, alteration in kinetics (activation, inactivation) and dominant-negative effects of truncated forms of alpha1 subunits. Forty of the identified cases featured cerebellar atrophy. We identified only a few cell and animal studies that focused on the mechanisms of ID/GDD in relation to CCs. There is a scarcity of studies on treatment options for ID/GDD both in vivo and in vitro. CONCLUSION Our results suggest that CCs play a major role in ID/GDD. While both gain- and loss-of-function variants are associated with ID/GDD, the mechanisms underlying their involvement need further scrutiny.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fangling Yan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China.
| |
Collapse
|