1
|
Huynh SD, Melonek J, Colas des Francs-Small C, Bond CS, Small I. A unique C-terminal domain contributes to the molecular function of Restorer-of-fertility proteins in plant mitochondria. THE NEW PHYTOLOGIST 2023; 240:830-845. [PMID: 37551058 DOI: 10.1111/nph.19166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Restorer-of-fertility (Rf) genes encode pentatricopeptide repeat (PPR) proteins that are targeted to mitochondria where they specifically bind to transcripts that induce cytoplasmic male sterility and repress their expression. In searching for a molecular signature unique to this class of proteins, we found that a majority of known Rf proteins have a distinct domain, which we called RfCTD (Restorer-of-fertility C-terminal domain), and its presence correlates with the ability to induce cleavage of the mitochondrial RNA target. A screen of 219 angiosperm genomes from 123 genera using a sequence profile that can quickly and accurately identify RfCTD sequences revealed considerable variation in RFL/RfCTD gene numbers across flowering plants. We observed that plant genera with bisexual flowers have significantly higher numbers of RFL genes compared to those with unisexual flowers, consistent with a role of these proteins in restoration of male fertility. We show that removing the RfCTD from the RFL protein RNA PROCESSING FACTOR 2-nad6 prevented cleavage of its RNA target, the nad6 transcript, in Arabidopsis thaliana mitochondria. We provide a simple way of identifying putative Rf candidates in genome sequences, new insights into the molecular mode of action of Rf proteins and the evolution of fertility restoration in flowering plants.
Collapse
Affiliation(s)
- Sang Dang Huynh
- School of Molecular Sciences, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Joanna Melonek
- School of Molecular Sciences, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Catherine Colas des Francs-Small
- School of Molecular Sciences, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ian Small
- School of Molecular Sciences, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
2
|
Sivolapova AB, Polivanova OB, Goryunov DV, Chebanova YV, Fedorova AV, Sotnikova EA, Karabitsina YI, Benko NI, Mukhina ZM, Anisimova IN, Demurin YN, Goryunova SV. Refinement of Rf1-gene localization and development of the new molecular markers for fertility restoration in sunflower. Mol Biol Rep 2023; 50:7919-7926. [PMID: 37453962 DOI: 10.1007/s11033-023-08646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Ability to restore male fertility is important trait for sunflower breeding. The most commonly used fertility restoration gene in the production of sunflower hybrids is Rf1. The localization of Rf1 on the linkage group 13 has been previously shown, however, its exact position, its sequence and molecular mechanism for fertility restoration remain unknown. Therefore, several markers linked to Rf1 gene, commonly used for MAS, don't always allow to identify the genotype of plants. For this reason, the search for new markers and precise localization of the Rf1 gene is an urgent task. METHODS AND RESULTS Based on previously identified single nucleotide polymorphisms (SNPs) at LG13, significantly associated with the ability to restore male fertility, two markers have been developed that have performed well after careful evaluation. These markers, together with other Rf1 markers, were applied for genotyping 72 diversity panel accessions and 291 individuals of F2 segregating population, obtained from crossing the cytoplasmic male sterility (CMS) AHO33 and restorer RT085HO lines. The analysis revealed no recombinants between Rf1 gene and SRF833 marker, the distance between Rf1 and SRF122 marker was 1.0 cM. CONCLUSIONS Data obtained made it possible to specify the localization of the Rf1 gene and reduce the list of candidate genes to the 3 closely linked PPR-genes spanning a total of 59 Kb. However, it cannot be ruled out that analysis of the candidate region in the genome of fertility restorer lines can reveal new candidate genes in this locus that are absent in the cytoplasmic male sterility maintainer reference sequence.
Collapse
Affiliation(s)
- Anastasia B Sivolapova
- Russian Potato Research Center, 23 Lorkh Str., Kraskovo, Moscow Region, Lyubertsy District, Lyubertsy, 140051, Russia.
| | - Oksana B Polivanova
- Russian Potato Research Center, 23 Lorkh Str., Kraskovo, Moscow Region, Lyubertsy District, Lyubertsy, 140051, Russia
- Russian State Agrarian University Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Street, Moscow, 127550, Russia
| | - Denis V Goryunov
- Russian Potato Research Center, 23 Lorkh Str., Kraskovo, Moscow Region, Lyubertsy District, Lyubertsy, 140051, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1 Leninskie Gory Str., bld. 40, Moscow, 119992, Russia
| | - Yulia V Chebanova
- FSBSI Federal scientific center "V.S. Pustovoit All-Russian Research Institute of Oil crops", 17 imeny Filatova Str, Krasnodar, 350038, Russia
| | - Alina V Fedorova
- Tsitsin Main Botanical Garden Russian Academy of Science, 4 Botanicheskaya Str, Moscow, 127276, Russia
| | - Evgeniia A Sotnikova
- National Medical Research Center for Therapy and Preventive Medicine, 10 Petroverigsky Per., bld. 3, Moscow, 101000, Russia
| | - Yulia I Karabitsina
- The N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 42, 44, Bolshaya Morskaya, Str., Saint Petersburg, 190000, Russia
| | - Nikolai I Benko
- Breeding and seed production company "Agroplazma", 71 Krasnykh Partizan Str, Krasnodar, 350012, Russia
| | - Zhanna M Mukhina
- All-Russia Rice Research Institute, 3 Belozernyy poselok, Krasnodar, 350921, Russia
| | - Irina N Anisimova
- The N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 42, 44, Bolshaya Morskaya, Str., Saint Petersburg, 190000, Russia
| | - Yakov N Demurin
- FSBSI Federal scientific center "V.S. Pustovoit All-Russian Research Institute of Oil crops", 17 imeny Filatova Str, Krasnodar, 350038, Russia
| | - Svetlana V Goryunova
- Russian Potato Research Center, 23 Lorkh Str., Kraskovo, Moscow Region, Lyubertsy District, Lyubertsy, 140051, Russia
- Institute of General Genetics Russian Academy of Science, 3 Gubkina Str, Moscow, 119333, Russia
| |
Collapse
|
3
|
Radanović A, Sprycha Y, Jocković M, Sundt M, Miladinović D, Jansen C, Horn R. KASP Markers Specific for the Fertility Restorer Locus Rf1 and Application for Genetic Purity Testing in Sunflowers ( Helianthus annuus L.). Genes (Basel) 2022; 13:465. [PMID: 35328019 PMCID: PMC8951052 DOI: 10.3390/genes13030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) were significantly associated with fertility restoration of cytoplasmic male sterility (CMS) PET1 by the restorer gene Rf1. For these SNPs, four Kompetitive allele-specific PCR (KASP) markers were successfully designed. The KASP markers cover the fertility restorer locus Rf1, spanning about 3 Mb, and clearly differentiate restorer and maintainer lines. For genetic purity testing in sunflower hybrid production, the efficiency for detecting contaminations in samples was simulated using mixtures of hypocotyls or leaves. Contaminations of restorer lines with 1%, 3%, 5%, 10%, and 50% of maintainer lines were screened with all four KASP markers. Contaminations of 10% could be clearly detected in pools of 100 plants. Contaminations below this level require detection on a single plant level. For single plant detections, ethyl methanesulfonate-treated sunflower F1 hybrids, which had been phenotypically evaluated for male sterility (potential mutation in the Rf1 gene) were screened. Nine identified either partially male-sterile or male-sterile plants were analyzed with all four KASP markers and only one proved to be a hybrid with a mutation, seven were male-sterile contaminants in the F1 seeds used (1.6%) and one a recombinant plant. The four KASP markers should be valuable tools for marker-assisted selection (MAS) in sunflower breeding regarding the restorer locus Rf1.
Collapse
Affiliation(s)
- Aleksandra Radanović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (M.J.); (D.M.)
| | - Yves Sprycha
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany; (Y.S.); (M.S.)
| | - Milan Jocković
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (M.J.); (D.M.)
| | - Monja Sundt
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany; (Y.S.); (M.S.)
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (M.J.); (D.M.)
| | - Constantin Jansen
- Strube Research GmbH & Co. KG, Hauptstr. 1, D-38387 Söllingen, Germany;
| | - Renate Horn
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany; (Y.S.); (M.S.)
| |
Collapse
|
4
|
Chen Y, Jia Y, Niu F, Wu Y, Ye J, Yang X, Zhang L, Song X. Identification and validation of genetic locus Rfk1 for wheat fertility restoration in the presence of Aegilops kotschyi cytoplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:875-885. [PMID: 33392709 DOI: 10.1007/s00122-020-03738-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Major fertility restorer locus for Aegilops kotschyi cytoplasm in wheat, Rfk1, was mapped to chromosome arm 1BS. Most likely candidate gene is TraesCS1B02G197400LC, which is predicted to encode a pectinesterase/pectinesterase inhibitor. Cytoplasmic male sterility (CMS) is widely used for heterosis and hybrid seed production in wheat. Genes related to male fertility restoration in the presence of Aegilops kotschyi cytoplasm have been reported, but the fertility restoration-associated gene loci have not been investigated systematically. In this study, a BC1F1 population derived from a backcross between KTP116A, its maintainer line TP116B, and its restorer line LK783 was employed to map fertility restoration by bulked segregant RNA-Seq (BSR-Seq). A major fertility allele restorer locus for Ae. kotschyi cytoplasm in wheat, Rfk1, was mapped to chromosome arm 1BS, and it was contributed by LK783. Morphological and cytological studies showed that male fertility restoration occurred mainly after the late uninucleate stage. Based on simple sequence repeat and single-nucleotide polymorphism genotyping, the gene locus was located between Xnwafu_6 and Xbarc137 on chromosome arm 1BS. To further isolate the specific region, six Kompetitive allele-specific polymerase chain reaction markers derived from BSR-Seq were developed to delimit Rfk1 within physical intervals of 26.0 Mb. After searching for differentially expressed genes within the candidate interval in the anthers and sequencing analysis, TraesCS1B02G197400LC was identified as a candidate gene for Rfk1 and it was predicted to encode a pectinesterase/pectinesterase inhibitor. Expression analysis also confirmed that it was specifically expressed in the anthers, and its expression level was higher in fertile lines compared with sterile lines. Thus, TraesCS1B02G197400LC was identified as the most likely candidate gene for Rfk1, thereby providing insights into the fertility restoration mechanism for K-type CMS in wheat.
Collapse
Affiliation(s)
- Yanru Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yulin Jia
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongfeng Wu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiali Ye
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|