1
|
Li G, Liu Y, Feng X, Diao S, Zhong Z, Li B, Teng J, Zhang W, Zeng H, Cai X, Gao Y, Liu X, Yuan X, Li J, Zhang Z. Integrating Multiple Database Resources to Elucidate the Gene Flow in Southeast Asian Pig Populations. Int J Mol Sci 2024; 25:5689. [PMID: 38891877 PMCID: PMC11171535 DOI: 10.3390/ijms25115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The domestic pig (Sus scrofa) and its subfamilies have experienced long-term and extensive gene flow, particularly in Southeast Asia. Here, we analyzed 236 pigs, focusing on Yunnan indigenous, European commercial, East Asian, and Southeast Asian breeds, using the Pig Genomics Reference Panel (PGRP v1) of Pig Genotype-Tissue Expression (PigGTEx) to investigate gene flow and associated complex traits by integrating multiple database resources. In this study, we discovered evidence of admixtures from European pigs into the genome of Yunnan indigenous pigs. Additionally, we hypothesized that a potential conceptual gene flow route that may have contributed to the genetic composition of the Diannan small-ear pig is a gene exchange from the Vietnamese pig. Based on the most stringent gene introgression scan using the fd statistic, we identified three specific loci on chromosome 8, ranging from 51.65 to 52.45 Mb, which exhibited strong signatures of selection and harbored the NAF1, NPY1R, and NPY5R genes. These genes are associated with complex traits, such as fat mass, immunity, and litter weight, in pigs, as supported by multiple bio-functionalization databases. We utilized multiple databases to explore the potential dynamics of genetic exchange in Southeast Asian pig populations and elucidated specific gene functionalities.
Collapse
Affiliation(s)
- Guangzhen Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Yuqiang Liu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Xueyan Feng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Shuqi Diao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Zhanming Zhong
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Bolang Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Jinyan Teng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Wenjing Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Haonan Zeng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Xiaodian Cai
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Yahui Gao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xiaolong Yuan
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Jiaqi Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Zhe Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| |
Collapse
|
2
|
Zhang L, Zhang S, Zhan F, Song M, Shang P, Zhu F, Li J, Yang F, Li X, Qiao R, Han X, Li X, Liu G, Wang K. Population Genetic Analysis of Six Chinese Indigenous Pig Meta-Populations Based on Geographically Isolated Regions. Animals (Basel) 2023; 13:ani13081396. [PMID: 37106959 PMCID: PMC10135051 DOI: 10.3390/ani13081396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The diversification of indigenous pig breeds in China has resulted from multiple climate, topographic, and human cultural influences. The numerous indigenous pig breeds can be geographically divided into six meta-populations; however, their genetic relationships, contributions to genetic diversity, and genetic signatures remain unclear. Whole-genome SNP data for 613 indigenous pigs from the six Chinese meta-populations were obtained and analyzed. Population genetic analyses confirmed significant genetic differentiation and a moderate mixture among the Chinese indigenous pig meta-populations. The North China (NC) meta-population had the largest contribution to genetic and allelic diversity. Evidence from selective sweep signatures revealed that genes related to fat deposition and heat stress response (EPAS1, NFE2L2, VPS13A, SPRY1, PLA2G4A, and UBE3D) were potentially involved in adaptations to cold and heat. These findings from population genetic analyses provide a better understanding of indigenous pig characteristics in different environments and a theoretical basis for future work on the conservation and breeding of Chinese indigenous pigs.
Collapse
Affiliation(s)
- Lige Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Songyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Fengting Zhan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingkun Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China
| | - Fangxian Zhu
- National Animal Husbandry Service, Beijing 100193, China
| | - Jiang Li
- National Supercomputing Center in Zhengzhou, Zhengzhou 450001, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Gang Liu
- National Animal Husbandry Service, Beijing 100193, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
3
|
Luo Y, Xu Q, Xue M, Wang Y, Yang X, Chan S, Tang Q, Wang F, Sun R, Chao Z, Fang M. Novel Haplotype in the HHEX Gene Promoter Associated with Body Length in Pigs. Genes (Basel) 2023; 14:511. [PMID: 36833438 PMCID: PMC9956144 DOI: 10.3390/genes14020511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
The screening of important candidate genes and the identification of genetic markers are important for molecular selection in the pig industry. The hematopoietically expressed homeobox (HHEX) gene plays an important role in embryonic development and organogenesis; however, the genetic variation and expression pattern of the porcine HHEX gene remains to be clarified. In this study, semiquantitative RT-PCR and immunohistochemistry results showed the specific expression of the HHEX gene in porcine cartilage tissues. A novel haplotype consisting of two SNPs rs80901185 (T > C) and rs80934526 (A > G) was detected in the promoter region of the HHEX gene. The expression of the HHEX gene was significantly higher in Yorkshire pigs (TA haplotype) than in Wuzhishan pigs (CG haplotype), and a population analysis showed that this haplotype was significantly associated with body length. An analysis subsequently revealed that the -586 to -1 bp region of the HHEX gene promoter showed the highest activity. Furthermore, we found that the activity of the TA haplotype was significantly higher than that of the CG haplotype by changing the potential binding of transcription factors YY1 and HDAC2. In summary, we conclude that the porcine HHEX gene may contribute to the breeding of pigs for body length traits.
Collapse
Affiliation(s)
- Yabiao Luo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiao Xu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Institution of Biological Technology, Nanchang Normal University, Nanchang 330029, China
| | - Mingming Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yubei Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoyang Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuheng Chan
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiguo Tang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feng Wang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Ruiping Sun
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
4
|
Peng Y, Derks MFL, Groenen MAM, Zhao Y, Bosse M. Distinct traces of mixed ancestry in western commercial pig genomes following gene flow from Chinese indigenous breeds. Front Genet 2023; 13:1070783. [PMID: 36712875 PMCID: PMC9880450 DOI: 10.3389/fgene.2022.1070783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Studying gene flow between different livestock breeds will benefit the discovery of genes related to production traits and provide insight into human historical breeding. Chinese pigs have played an indispensable role in the breeding of Western commercial pigs. However, the differences in the timing and volume of the contribution of pigs from different Chinese regions to Western pigs are not yet apparent. In this paper, we combine the whole-genome sequencing data of 592 pigs from different studies and illustrate patterns of gene flow from Chinese pigs into Western commercial pigs. We describe introgression patterns from four distinct Chinese indigenous groups into five Western commercial groups. There were considerable differences in the number and length of the putative introgressed segments from Chinese pig groups that contributed to Western commercial pig breeds. The contribution of pigs from different Chinese geographical locations to a given western commercial breed varied more than that from a specific Chinese pig group to different Western commercial breeds, implying admixture within Europe after introgression. Within different Western commercial lines from the same breed, the introgression patterns from a given Chinese pig group seemed highly conserved, suggesting that introgression of Chinese pigs into Western commercial pig breeds mainly occurred at an early stage of breed formation. Finally, based on analyses of introgression signals, allele frequencies, and selection footprints, we identified a ∼2.65 Mb Chinese-derived haplotype under selection in Duroc pigs (CHR14: 95.68-98.33 Mb). Functional and phenotypic studies demonstrate that this PRKG1 haplotype is related to backfat and loin depth in Duroc pigs. Overall, we demonstrate that the introgression history of domestic pigs is complex and that Western commercial pigs contain distinct traces of mixed ancestry, likely derived from various Chinese pig breeds.
Collapse
Affiliation(s)
- Yebo Peng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Martijn FL Derks
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands
- Topigs Norsvin Research Center, Beuningen, Netherlands
| | - Martien AM Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mirte Bosse
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands
- Amsterdam Insitute of Life and Environment (A-Life), VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Wang X, Li G, Jiang Y, Tang J, Fan Y, Ren J. Genomic insights into the conservation and population genetics of two Chinese native goat breeds. J Anim Sci 2022; 100:skac274. [PMID: 35998083 PMCID: PMC9585554 DOI: 10.1093/jas/skac274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 08/20/2022] [Indexed: 11/14/2022] Open
Abstract
Chinese goats are an important group of goats worldwide. However, there are few studies on the conservation priority, genetic relationship, and potential gene flow between Chinese and global goat breeds. Here, we genotyped 239 goats from conservation populations of the Chinese Guangfeng and Ganxi breeds using the GoatSNP50 BeadChip. The conservation priority, population structure, selection signatures and introgression of these goats were analyzed in the context of 36 global goat breeds. First, we showed that Guangfeng and Ganxi goats had the largest effective population sizes across the global breeds 13 generations ago. Nevertheless, Ganxi goats have recently experienced a high degree of inbreeding, resulting in their conservation priority based on total gene and allelic diversities being lower than that of most other Chinese breeds (including Guangfeng goats). Population structure and admixture analyses showed that an average of 18% of Guangfeng genomic components were introgressed from Boer goats approximately 18-yr ago. Next, we reconstructed the subfamily structure of the core populations of Guangfeng and Ganxi goats, and proposed reasonable conservation strategies for inbreeding management. Moreover, a list of candidate genes under selection for fertility, immunity, growth, and meat quality were detected in Guangfeng and Ganxi goats. Finally, we identified some genes related to body development and reproduction, which were introgressed from Boer goats and may be beneficial for improving performance and productivity of Guangfeng goats. In conclusion, this study not only provides new insights into the conservation and utilization of Guangfeng and Ganxi goats but also enriches our understanding of artificial introgression from exotic goats into Chinese local goats.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guixin Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongchuang Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianhong Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou 341000, China
| | - Yin Fan
- Department of Animal Science, Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Jun Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Tang H, Ouyang J, Liu S, Xiong Y, Wu Y, Wang L, Wang C, Yan X, Shen Y, Chen H. Population structure of 3907 worldwide pigs and the introgression of Chinese indigenous pigs by European pigs. Anim Genet 2022; 53:599-612. [PMID: 35735069 DOI: 10.1111/age.13234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 05/25/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022]
Abstract
With the improvement in sequencing technology and the decrease in sequencing cost, increasing amounts of genomic data for pigs have been uploaded to public databases. However, no researchers have to date integrated all currently available data to uncover the global genetic status of pigs. Meanwhile, little is known about the introgression from European to Chinese pigs and its underlying influences. Therefore, we integrated the effective genotype data of 3907 pigs from 193 populations worldwide using population genetic analysis, gene flow analysis and a sharing-IBD study. These findings illustrate not only the population structure of 59 Chinese native breeds and others but also the amounts of gene flow and introgression that have occurred between Western and Chinese pigs. In addition, we demonstrate the presence of introgressed European haplotypes in Chinese indigenous breeds and identify relevant introgressed regions that contain genes associated with growth and feed efficiency. Moreover, we compare the introgression patterns of Western and Chinese pigs and further discuss possible explanations for why the level of introgression differs between Chinese pig breeds and Western modern breeds. Collectively, this study provides a fine global population structure analysis of pigs and presents evidence of European pigs being interbred with local breeds in China.
Collapse
Affiliation(s)
- Hongbo Tang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jing Ouyang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Siyu Liu
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yanpeng Xiong
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yongfei Wu
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Luping Wang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Cong Wang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xueming Yan
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yangyang Shen
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Hao Chen
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
7
|
Vahedi SM, Salek Ardestani S, Pahlevan Afshari K, Ghoreishifar SM, Moghaddaszadeh-Ahrabi S, Banabazi MH, Brito LF. Genome-Wide Selection Signatures and Human-Mediated Introgression Events in Bos taurus indicus-influenced Composite Beef Cattle. Front Genet 2022; 13:844653. [PMID: 35719394 PMCID: PMC9201998 DOI: 10.3389/fgene.2022.844653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic introgression from interbreeding hybridization of European Bos taurus taurus (EBT) and Indian Bos taurus indicus (IBI) cattle breeds have been widely used to combine the climatic resilience of the IBI cattle and the higher productivity of EBT when forming new composite beef cattle (CB) populations. The subsequent breeding strategies have shifted their initial genomic compositions. To uncover population structure, signatures of selection, and potential introgression events in CB populations, high-density genotypes [containing 492,954 single nucleotide polymorphisms (SNPs) after the quality control] of 486 individuals from 15 cattle breeds, including EBT, IBI, and CB populations, along with two Bos grunniens genotypes as outgroup were used in this study. Then, in-depth population genetics analyses were performed for three CB breeds of Beefmaster, Brangus, and Santa Gertrudis. Neighbor-joining, principal components, and admixture analyses confirmed the historical introgression of EBT and IBI haplotypes into CB breeds. The fdM statistics revealed that only 12.9% of CB populations' genetic components are of IBI origin. The results of signatures of selection analysis indicated different patterns of selection signals in the three CB breeds with primary pressure on pathways involved in protein processing and stress response in Beefmaster, cell proliferation regulation and immune response in Brangus, and amino acids and glucose metabolisms in Santa Gertrudis. An average of >90% of genomic regions underlying selection signatures were of EBT origin in the studied CB populations. Investigating the CB breeds' genome allows the estimation of EBT and IBI ancestral proportions and the locations within the genome where either taurine or indicine origin alleles are under selective pressure. Such findings highlight various opportunities to control the selection process more efficiently and explore complementarity at the genomic level in CB populations.
Collapse
Affiliation(s)
- Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Siavash Salek Ardestani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kian Pahlevan Afshari
- Department of Animal Sciences, Islamic Azad University, Varamin-Pishva Branch, Varamin, Iran
| | - Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sima Moghaddaszadeh-Ahrabi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Mohammad Hossein Banabazi
- Department of Animal Breeding and Genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Luiz Fernando Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
8
|
Admixture and breed traceability in European indigenous pig breeds and wild boar using genome-wide SNP data. Sci Rep 2022; 12:7346. [PMID: 35513520 PMCID: PMC9072372 DOI: 10.1038/s41598-022-10698-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Preserving diversity of indigenous pig (Sus scrofa) breeds is a key factor to (i) sustain the pork chain (both at local and global scales) including the production of high-quality branded products, (ii) enrich the animal biobanking and (iii) progress conservation policies. Single nucleotide polymorphism (SNP) chips offer the opportunity for whole-genome comparisons among individuals and breeds. Animals from twenty European local pigs breeds, reared in nine countries (Croatia: Black Slavonian, Turopolje; France: Basque, Gascon; Germany: Schwabisch-Hällisches Schwein; Italy: Apulo Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano, Sarda; Lithuania: Indigenous Wattle, White Old Type; Portugal: Alentejana, Bísara; Serbia: Moravka, Swallow-Bellied Mangalitsa; Slovenia: Krškopolje pig; Spain: Iberian, Majorcan Black), and three commercial breeds (Duroc, Landrace and Large White) were sampled and genotyped with the GeneSeek Genomic Profiler (GGP) 70 K HD porcine genotyping chip. A dataset of 51 Wild Boars from nine countries was also added, summing up to 1186 pigs (~ 49 pigs/breed). The aim was to: (i) investigate individual admixture ancestries and (ii) assess breed traceability via discriminant analysis on principal components (DAPC). Albeit the mosaic of shared ancestries found for Nero Siciliano, Sarda and Moravka, admixture analysis indicated independent evolvement for the rest of the breeds. High prediction accuracy of DAPC mark SNP data as a reliable solution for the traceability of breed-specific pig products.
Collapse
|
9
|
Lee YS, Son S, Heo J, Shin D. Detecting the differential genomic variants using cross-population phenotype-associated variant (XP-PAV) of the Landrace and Yorkshire pigs in Korea. Anim Cells Syst (Seoul) 2021; 25:416-423. [PMID: 35059141 PMCID: PMC8765246 DOI: 10.1080/19768354.2021.2006310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although there have been many genome-wide association studies (GWAS) and selective sweep analyses to understand pig genomic regions related to growth performance, these methods considered only the gene effect and selection signal, respectively. In this study, we suggest the cross-population phenotype associated variant (XP-PAV) analysis as a novel method to determine the genomic variants with different effects between the two populations. XP-PAV analysis could reveal the differential genetic variants between the two populations by considering the gene effect and selection signal simultaneously. In this study, we used daily weight gain (DWG) and back fat thickness (BF) as phenotypes and the Landrace and Yorkshire populations were used for XP-PAV analysis. The main aim was to reveal the differential selection by considering the gene effect between Landrace and Yorkshire pigs. In the gene ontology analysis of XP-PAV results, differential selective genes in DWG analysis were involved in the regulation of interleukin-2 production and cell cycle G2/M transition. The protein modification and glycerophospholipid biosynthetic processes were the most enriched terms in the BF analysis. Therefore, we could identify genetic differences for immune and several metabolic pathways between Landrace and Yorkshire breeds using the XP-PAV analysis. In this study, we expect that XP-PAV analysis will play a role in determining useful selective variants with gene effects and provide a new interpretation of the genetic differences between the two populations.
Collapse
Affiliation(s)
- Young-Sup Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Seungwoo Son
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jaeyoung Heo
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
10
|
Wang K, Zhang L, Duan D, Qiao R, Li X, Li X, Han X. Genomic Analysis Reveals Human-Mediated Introgression From European Commercial Pigs to Henan Indigenous Pigs. Front Genet 2021; 12:705803. [PMID: 34220966 PMCID: PMC8249855 DOI: 10.3389/fgene.2021.705803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Introgression of genetic features from European pigs into Chinese pigs was reported possibly contributing to improvements in productivity traits, such as feed conversion efficiency and body size. However, the genomic differences from European pigs and the potential role of introgression in Henan indigenous pigs remains unclear. In this study, we found significant introgression from European pigs into the genome of Chinese indigenous pigs, especially in Henan indigenous pigs. The introgression in Henan indigenous pigs, particularly in the Nanyang black pig, was mainly derived from Duroc pigs. Most importantly, we found that the NR6A1, GPD2, and CSRNP3 genes were introgressed and reshaped by artificial selection, and these may have contributed to increases in pig body size and feed conversion efficiency. Our results suggest that human-mediated introgression and selection have reshaped the genome of Henan pigs and improved several of their desired traits. These findings contribute to our understanding of the history of Henan indigenous pigs and provide insights into the genetic mechanisms affecting economically important traits in pig populations.
Collapse
Affiliation(s)
- Kejun Wang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lige Zhang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Dongdong Duan
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ruimin Qiao
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiuling Li
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xinjian Li
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xuelei Han
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
11
|
Chebii VJ, Mpolya EA, Muchadeyi FC, Domelevo Entfellner JB. Genomics of Adaptations in Ungulates. Animals (Basel) 2021; 11:1617. [PMID: 34072591 PMCID: PMC8230064 DOI: 10.3390/ani11061617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Ungulates are a group of hoofed animals that have long interacted with humans as essential sources of food, labor, clothing, and transportation. These consist of domesticated, feral, and wild species raised in a wide range of habitats and biomes. Given the diverse and extreme environments inhabited by ungulates, unique adaptive traits are fundamental for fitness. The documentation of genes that underlie their genomic signatures of selection is crucial in this regard. The increasing availability of advanced sequencing technologies has seen the rapid growth of ungulate genomic resources, which offers an exceptional opportunity to understand their adaptive evolution. Here, we summarize the current knowledge on evolutionary genetic signatures underlying the adaptations of ungulates to different habitats.
Collapse
Affiliation(s)
- Vivien J. Chebii
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| | - Emmanuel A. Mpolya
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
| | - Farai C. Muchadeyi
- Agricultural Research Council Biotechnology Platform (ARC-BTP), Private Bag X5, Onderstepoort 0110, South Africa;
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| |
Collapse
|
12
|
Wang X, Zhang H, Huang M, Tang J, Yang L, Yu Z, Li D, Li G, Jiang Y, Sun Y, Wei S, Xu P, Ren J. Whole-genome SNP markers reveal conservation status, signatures of selection, and introgression in Chinese Laiwu pigs. Evol Appl 2021; 14:383-398. [PMID: 33664783 PMCID: PMC7896721 DOI: 10.1111/eva.13124] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Laiwu pigs are a Chinese indigenous breed that is renowned for its exceptionally high intramuscular fat content (average greater than 6%), providing an excellent genetic resource for the genetic improvement of meat quality of modern commercial pigs. To uncover genetic diversity, population structure, signature of selection, and potential exotic introgression in this breed, we sampled 238 Laiwu pigs from a state-supported conservation population and genotyped these individuals using GeneSeek 80K SNP BeadChip. We then conducted in-depth population genetics analyses for the Laiwu pig in a context of 1,116 pigs from 42 Eurasian diverse breeds. First, we show that the current Laiwu population has more abundant genetic diversity than the population of 18 years ago likely due to gene flow from European commercial breeds. Both neighbor-joining (NJ) and principal component analyses indicate the introgression of European haplotypes into Laiwu pigs. The admixture analysis reveals that an average 26.66% of Laiwu genetic components are of European origin. Then, we assigned the tested individuals to different families according to their clustering patterns in the NJ tree and proposed a family-based conservation strategy to reduce the risk of inbreeding depression in Laiwu pigs. Next, we explored three statistics (ROH and iHS and EigenGWAS) to identify a list of candidate genes for fat deposition, reproduction, and growth in Laiwu pigs. Last, we detected a strong signature of introgression from European pigs into Laiwu pigs at the GPC6 locus that regulates the growth of developing long bones. Further association analyses indicate that the introgressed GPC6 haplotype likely contributed to the improvement of growth performance in Laiwu pigs. Altogether, this study not only benefits the better conservation of the Laiwu pig, but also advances our knowledge of the poorly understood effect of human-mediated introgression on phenotypic traits in Chinese indigenous pigs.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Guangdong Laboratory for Lingnan Modern AgricultureCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Hui Zhang
- Guangdong Laboratory for Lingnan Modern AgricultureCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Min Huang
- Guangdong Laboratory for Lingnan Modern AgricultureCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Jianhong Tang
- Guangdong Laboratory for Lingnan Modern AgricultureCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Lijuan Yang
- Guangdong Laboratory for Lingnan Modern AgricultureCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Zhiqiang Yu
- Guangdong Laboratory for Lingnan Modern AgricultureCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Desen Li
- Guangdong Laboratory for Lingnan Modern AgricultureCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Guixin Li
- Guangdong Laboratory for Lingnan Modern AgricultureCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Yongchuang Jiang
- Guangdong Laboratory for Lingnan Modern AgricultureCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Yanxiao Sun
- Jinan Conservation Farm for Laiwu PigsJinanChina
| | - Shudong Wei
- Jinan Conservation Farm for Laiwu PigsJinanChina
| | - Pan Xu
- School of Animal Science and TechnologyJiangsu Agri‐animal Husbandry Vocational CollegeTaizhouChina
| | - Jun Ren
- Guangdong Laboratory for Lingnan Modern AgricultureCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|