1
|
Skórka P, Kordykiewicz D, Ilków A, Ptaszyński K, Wójcik J, Skórka W, Wojtyś ME. Surgical Treatment and Targeted Therapy for a Large Metastatic Malignant Peripheral Nerve Sheath Tumor: A Case Report and Literature Review. Life (Basel) 2024; 14:1648. [PMID: 39768355 PMCID: PMC11680011 DOI: 10.3390/life14121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Neurofibromatosis type 1 (NF1) significantly increases the risk of malignant peripheral nerve sheath tumors (MPNST), a rare and aggressive malignancy for which treatment is clinically challenging. This paper presents the case of a 24-year-old male with an NF1 who developed MPNST with lung metastases. Due to the limited effectiveness of systemic therapy in the treatment of MPNST, the patient underwent radical surgical resection and radiotherapy. Pathological evaluation confirmed high-grade MPNST, and PET-CT imaging revealed further metastatic progression. The treatment results for our patient are compared with those of other patients with NF1 who also developed MPNST with lung metastases in the literature. The findings suggest the need for further research into personalized treatment strategies that may improve prognosis and overall survival in patients with NF1 and MPNST, with immunotherapy being a promising therapeutic option.
Collapse
Affiliation(s)
- Patryk Skórka
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, Alfreda Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Dawid Kordykiewicz
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, Alfreda Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Andrzej Ilków
- Department of General, Vascular and Oncological Surgery, Provincial Hospital, Mikołaja Kopernika, Tytusa Chałubińskiego 7, 75-581 Koszalin, Poland
| | - Konrad Ptaszyński
- Department of Pathology, University Hospital of Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Janusz Wójcik
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, Alfreda Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Wiktoria Skórka
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, Alfreda Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Małgorzata Edyta Wojtyś
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, Alfreda Sokołowskiego 11, 70-891 Szczecin, Poland
| |
Collapse
|
2
|
Grit JL, McGee LE, Tovar EA, Essenburg CJ, Wolfrum E, Beddows I, Williams K, Sheridan RTC, Schipper JL, Adams M, Arumugam M, Vander Woude T, Gurunathan S, Field JM, Wulfkuhle J, Petricoin EF, Graveel CR, Steensma MR. p53 modulates kinase inhibitor resistance and lineage plasticity in NF1-related MPNSTs. Oncogene 2024; 43:1411-1430. [PMID: 38480916 PMCID: PMC11068581 DOI: 10.1038/s41388-024-03000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 05/05/2024]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are chemotherapy resistant sarcomas that are a leading cause of death in neurofibromatosis type 1 (NF1). Although NF1-related MPNSTs derive from neural crest cell origin, they also exhibit intratumoral heterogeneity. TP53 mutations are associated with significantly decreased survival in MPNSTs, however the mechanisms underlying TP53-mediated therapy responses are unclear in the context of NF1-deficiency. We evaluated the role of two commonly altered genes, MET and TP53, in kinome reprograming and cellular differentiation in preclinical MPNST mouse models. We previously showed that MET amplification occurs early in human MPNST progression and that Trp53 loss abrogated MET-addiction resulting in MET inhibitor resistance. Here we demonstrate a novel mechanism of therapy resistance whereby p53 alters MET stability, localization, and downstream signaling leading to kinome reprogramming and lineage plasticity. Trp53 loss also resulted in a shift from RAS/ERK to AKT signaling and enhanced sensitivity to MEK and mTOR inhibition. In response to MET, MEK and mTOR inhibition, we observed broad and heterogeneous activation of key differentiation genes in Trp53-deficient lines suggesting Trp53 loss also impacts lineage plasticity in MPNSTs. These results demonstrate the mechanisms by which p53 loss alters MET dependency and therapy resistance in MPNSTS through kinome reprogramming and phenotypic flexibility.
Collapse
Affiliation(s)
- Jamie L Grit
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Lauren E McGee
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Elizabeth A Tovar
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Curt J Essenburg
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Emily Wolfrum
- Bioinformatics & Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Ian Beddows
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Kaitlin Williams
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | | | - Joshua L Schipper
- Flow Cytometry Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Menusha Arumugam
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Thomas Vander Woude
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Sharavana Gurunathan
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jeffrey M Field
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Carrie R Graveel
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Matthew R Steensma
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.
- Helen DeVos Children's Hospital, Corewell Health System, Grand Rapids, MI, 49503, USA.
- Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
3
|
Kharouf N, Flanagan TW, Hassan SY, Shalaby H, Khabaz M, Hassan SL, Megahed M, Haikel Y, Santourlidis S, Hassan M. Tumor Microenvironment as a Therapeutic Target in Melanoma Treatment. Cancers (Basel) 2023; 15:3147. [PMID: 37370757 DOI: 10.3390/cancers15123147] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The role of the tumor microenvironment in tumor growth and therapy has recently attracted more attention in research and drug development. The ability of the microenvironment to trigger tumor maintenance, progression, and resistance is the main cause for treatment failure and tumor relapse. Accumulated evidence indicates that the maintenance and progression of tumor cells is determined by components of the microenvironment, which include stromal cells (endothelial cells, fibroblasts, mesenchymal stem cells, and immune cells), extracellular matrix (ECM), and soluble molecules (chemokines, cytokines, growth factors, and extracellular vesicles). As a solid tumor, melanoma is not only a tumor mass of monolithic tumor cells, but it also contains supporting stroma, ECM, and soluble molecules. Melanoma cells are continuously in interaction with the components of the microenvironment. In the present review, we focus on the role of the tumor microenvironment components in the modulation of tumor progression and treatment resistance as well as the impact of the tumor microenvironment as a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Naji Kharouf
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Sofie-Yasmin Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Marla Khabaz
- Department of Production, Beta Factory for Veterinary Pharmaceutical Industries, Damascus 0100, Syria
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany
| | - Youssef Haikel
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Mohamed Hassan
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Pellerino A, Verdijk RM, Nichelli L, Andratschke NH, Idbaih A, Goldbrunner R. Diagnosis and Treatment of Peripheral and Cranial Nerve Tumors with Expert Recommendations: An EUropean Network for RAre CANcers (EURACAN) Initiative. Cancers (Basel) 2023; 15:cancers15071930. [PMID: 37046591 PMCID: PMC10093509 DOI: 10.3390/cancers15071930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The 2021 WHO classification of the CNS Tumors identifies as "Peripheral nerve sheath tumors" (PNST) some entities with specific clinical and anatomical characteristics, histological and molecular markers, imaging findings, and aggressiveness. The Task Force has reviewed the evidence of diagnostic and therapeutic interventions, which is particularly low due to the rarity, and drawn recommendations accordingly. Tumor diagnosis is primarily based on hematoxylin and eosin-stained sections and immunohistochemistry. Molecular analysis is not essential to establish the histological nature of these tumors, although genetic analyses on DNA extracted from PNST (neurofibromas/schwannomas) is required to diagnose mosaic forms of NF1 and SPS. MRI is the gold-standard to delineate the extension with respect to adjacent structures. Gross-total resection is the first choice, and can be curative in benign lesions; however, the extent of resection must be balanced with preservation of nerve functioning. Radiotherapy can be omitted in benign tumors after complete resection and in NF-related tumors, due to the theoretic risk of secondary malignancies in a tumor-suppressor syndrome. Systemic therapy should be considered in incomplete resected plexiform neurofibromas/MPNSTs. MEK inhibitor selumetinib can be used in NF1 children ≥2 years with inoperable/symptomatic plexiform neurofibromas, while anthracycline-based treatment is the first choice for unresectable/locally advanced/metastatic MPNST. Clinical trials on other MEK1-2 inhibitors alone or in combination with mTOR inhibitors are under investigation in plexiform neurofibromas and MPNST, respectively.
Collapse
Affiliation(s)
- Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, 10126 Turin, Italy
| | - Robert M Verdijk
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC University Medical Center Rotterdam, 3015 Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, 2333 Leiden, The Netherlands
| | - Lucia Nichelli
- Department of Neuroradiology, Sorbonne Université, 75005 Paris, France
- Assistance Publique-Hôpitaux de Paris, 75610 Paris, France
- Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, 75013 Paris, France
| | - Nicolaus H Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| | - Ahmed Idbaih
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, 75005 Paris, France
- Inserm, CNRS, UMR S 1127, Institut du Cerveau-Paris Brain Institute, 75013 Paris, France
- ICM, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Roland Goldbrunner
- Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, 50923 Cologne, Germany
| |
Collapse
|
5
|
Ellermann SF, Jongman RM, Luxen M, Kuiper T, Plantinga J, Moser J, Scheeren TWL, Theilmeier G, Molema G, Van Meurs M. Pharmacological inhibition of protein tyrosine kinases axl and fyn reduces TNF-α-induced endothelial inflammatory activation in vitro. Front Pharmacol 2022; 13:992262. [PMID: 36532777 PMCID: PMC9750991 DOI: 10.3389/fphar.2022.992262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Major surgery induces systemic inflammation leading to pro-inflammatory activation of endothelial cells. Endothelial inflammation is one of the drivers of postoperative organ damage, including acute kidney injury Tumour Necrosis Factor alpha (TNF-α) is an important component of surgery-induced pro-inflammatory activation of endothelial cells. Kinases, the backbone of signalling cascades, can be targeted by pharmacological inhibition. This is a promising treatment option to interfere with excessive endothelial inflammation. In this study, we identified activated kinases as potential therapeutic targets. These targets were pharmacologically inhibited to reduce TNF-α-induced pro-inflammatory signalling in endothelial cells. Kinome profiling using PamChip arrays identified 64 protein tyrosine kinases and 88 serine-threonine kinases, the activity of which was determined at various timepoints (5-240 min) following stimulation with 10 ng/ml TNF-α in Human umbilical vein endothelial cells in vitro. The PTKs Axl and Fyn were selected based on high kinase activity profiles. Co-localisation experiments with the endothelial-specific protein CD31 showed Axl expression in endothelial cells of glomeruli and Fyn in arterioles and glomeruli of both control and TNF-α-exposed mice. Pharmacological inhibition with Axl inhibitor BMS-777607 and Fyn inhibitor PP2 significantly reduced TNF-α-induced pro-inflammatory activation of E-selectin, VCAM-1, ICAM-1, IL-6 and IL-8 at mRNA and VCAM-1, ICAM-1, and IL-6 at protein level in HUVEC in vitro. Upon pharmacological inhibition with each inhibitor, leukocyte adhesion to HUVEC was also significantly reduced, however to a minor extent. In conclusion, pre-treatment of endothelial cells with kinase inhibitors BMS-777607 and PP2 reduces TNF-α-induced endothelial inflammation in vitro.
Collapse
Affiliation(s)
- Sophie F. Ellermann
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Perioperative Inflammation and Infection, Department of Human Medicine, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Rianne M. Jongman
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matthijs Luxen
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Timara Kuiper
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Josee Plantinga
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jill Moser
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Thomas W. L. Scheeren
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gregor Theilmeier
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Perioperative Inflammation and Infection, Department of Human Medicine, Faculty of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Grietje Molema
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matijs Van Meurs
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Gonzalez-Muñoz T, Kim A, Ratner N, Peinado H. The need for new treatments targeting MPNST: the potential of strategies combining MEK inhibitors with antiangiogenic agents. Clin Cancer Res 2022; 28:3185-3195. [PMID: 35446392 DOI: 10.1158/1078-0432.ccr-21-3760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/01/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
Abstract
Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are aggressive soft tissue sarcomas that represent an important clinical challenge, particularly given their strong tendency to relapse and metastasize, and their relatively poor response to conventional therapies. To date, targeted, non-cytotoxic treatments have demonstrated limited clinical success with MPNSTs, highlighting the need to explore other key pathways in order to find novel, improved therapeutic approaches. Here, we review evidence supporting the crucial role of the RAS/MEK/ERK pathway and angiogenesis in MPNST pathogenesis, and we focus on the potential of therapies targeting these pathways to treat this disease. We also present works suggesting that the combination of MEK inhibitors and anti-angiogenic agents could represent a promising therapeutic strategy to manage MPNSTs. In support of this notion, we discuss the preclinical rational and clinical benefits of this combination therapy in other solid tumor types. Finally, we describe other emerging therapeutic approaches that could improve patient outcomes in MPNSTs, such as immune-based therapies.
Collapse
Affiliation(s)
| | - AeRang Kim
- Children's National Hospital, Washington, DC, United States
| | - Nancy Ratner
- Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Héctor Peinado
- Spanish National Cancer Research Centre, Madrid, Madrid, Spain
| |
Collapse
|
7
|
Wang J, Pollard K, Calizo A, Pratilas CA. Activation of Receptor Tyrosine Kinases Mediates Acquired Resistance to MEK Inhibition in Malignant Peripheral Nerve Sheath Tumors. Cancer Res 2020; 81:747-762. [PMID: 33203698 DOI: 10.1158/0008-5472.can-20-1992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/08/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
Malignant peripheral nerve sheath tumors often arise in patients with neurofibromatosis type 1 and are among the most treatment-refractory types of sarcoma. Overall survival in patients with relapsed disease remains poor, and thus novel therapeutic approaches are needed. NF1 is essential for negative regulation of RAS activity and is altered in about 90% of malignant peripheral nerve sheath tumors (MPNST). A complex interplay of upstream signaling and parallel RAS-driven pathways characterizes NF1-driven tumorigenesis, and inhibiting more than one RAS effector pathway is therefore necessary. To devise potential combination therapeutic strategies, we identified actionable alterations in signaling that underlie adaptive and acquired resistance to MEK inhibitor (MEKi). Using a series of proteomic, biochemical, and genetic approaches in an in vitro model of MEKi resistance provided a rationale for combination therapies. HGF/MET signaling was elevated in the MEKi-resistant model. HGF overexpression conferred resistance to MEKi in parental cells. Depletion of HGF or MET restored sensitivity of MEKi-resistant cells to MEKi. Finally, a combination of MEK and MET inhibition demonstrated activity in models of MPNST and may therefore be effective in patients with MPNST harboring genetic alterations in NF1. SIGNIFICANCE: This study demonstrates that MEKi plus MET inhibitor may delay or prevent a novel mechanism of acquired MEKi resistance, with clinical implications for MPNST patients harboring NF1 alterations.
Collapse
Affiliation(s)
- Jiawan Wang
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kai Pollard
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ana Calizo
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine A Pratilas
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
8
|
Special Issue: "Genomics and Models of Nerve Sheath Tumors". Genes (Basel) 2020; 11:genes11091024. [PMID: 32882803 PMCID: PMC7563428 DOI: 10.3390/genes11091024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/26/2022] Open
|