1
|
Ishikawa Y, Ushijima Y, Kiyoi H. Recent advances in AML with mutated NPM1. Int J Hematol 2024; 120:556-565. [PMID: 39174699 DOI: 10.1007/s12185-024-03835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Nucleophosmin 1 (NPM1) mutation is one of the most prevalent genetic mutations in adult acute myeloid leukemia (AML) and is particularly predominant in AML with a normal karyotype. NPM1 is a chaperone protein that plays various roles in several cellular processes. Wild-type NPM1 is normally localized to the nucleus, whereas mutant NPM1 proteins exhibit altered cytoplasmic localization. Clinically, AML with mutated NPM1 without FLT3-ITD is associated with a higher complete remission rate and improved overall survival. AML with mutated NPM1 is categorized as a distinct genetic entity in the World Health Organization classification of hematopoietic malignancies due to its unique clinical and biological features. However, the precise roles of NPM1 in normal hematopoiesis and in AML development remain unclear. Recent studies have revealed various clinical applications of NPM1 mutations in AML treatment, particularly in measurable residual disease analyses that target mutant NPM1 transcripts and in potential therapeutic applications of menin inhibitors and XPO-1 inhibitors for AML with mutated NPM1. Thus, NPM1 mutation is highly significant in AML classification, prognosis, response assessment, and molecular targeted therapies. Here, we review recent progress in clinical and biological aspects of AML with mutated NPM1 including molecular targeted therapy.
Collapse
Affiliation(s)
- Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Yoko Ushijima
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| |
Collapse
|
2
|
Greiner J, Mohamed E, Fletcher DM, Schuler PJ, Schrezenmeier H, Götz M, Guinn BA. Immunotherapeutic Potential of Mutated NPM1 for the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2024; 16:3443. [PMID: 39456538 PMCID: PMC11505958 DOI: 10.3390/cancers16203443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease of the blood and bone marrow that is characterized by uncontrolled clonal proliferation of abnormal myeloid progenitor cells. Nucleophosmin 1 (NPM1) gene mutations are the most common genetic abnormality in AML, detectable in blast cells from about one-third of adults with AML. AML NPM1mut is recognized as a separate entity in the World Health Organization classification of AML. Clinical and survival data suggest that patients with this form of AML often have a more favorable prognosis, which may be due to the immunogenicity created by the mutations in the NPM1 protein. Consequently, AML with NPM1mut can be considered an immunogenic subtype of AML. However, the underlying mechanisms of this immunogenicity and associated favorable survival outcomes need to be further investigated. Immune checkpoint molecules, such as the programmed cell death-1 (PD-1) protein and its ligand, PD-L1, play important roles in leukemogenesis through their maintenance of an immunosuppressive tumor microenvironment. Preclinical trials have shown that the use of PD-1/PD-L1 checkpoint inhibitors in solid tumors and lymphoma work best in novel therapy combinations. Patients with AML NPM1mut may be better suited to immunogenic strategies that are based on the inhibition of the PD-1 immune checkpoint pathway than patients without this mutation, suggesting the genetic landscape of patients may also inform best practice for the use of PD-1 inhibitors.
Collapse
Affiliation(s)
- Jochen Greiner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Internal Medicine, Diakonie Hospital Stuttgart, 70176 Stuttgart, Germany
| | - Eithar Mohamed
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| | - Daniel M. Fletcher
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, University Hospital Ulm, 89075 Ulm, Germany;
- Department of Oto-Rhino-Laryngology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, 89073 Ulm, Germany;
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, 89081 Ulm, Germany
| | - Marlies Götz
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Internal Medicine, Diakonie Hospital Stuttgart, 70176 Stuttgart, Germany
| | - Barbara-ann Guinn
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| |
Collapse
|
3
|
Ruglioni M, Crucitta S, Luculli GI, Tancredi G, Del Giudice ML, Mechelli S, Galimberti S, Danesi R, Del Re M. Understanding mechanisms of resistance to FLT3 inhibitors in adult FLT3-mutated acute myeloid leukemia to guide treatment strategy. Crit Rev Oncol Hematol 2024; 201:104424. [PMID: 38917943 DOI: 10.1016/j.critrevonc.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
The presence of FLT3 mutations, including the most common FLT3-ITD (internal tandem duplications) and FLT3-TKD (tyrosine kinase domain), is associated with an unfavorable prognosis in patients affected by acute myeloid leukemia (AML). In this setting, in recent years, new FLT3 inhibitors have demonstrated efficacy in improving survival and treatment response. Nevertheless, the development of primary and secondary mechanisms of resistance poses a significant obstacle to their efficacy. Understanding these mechanisms is crucial for developing novel therapeutic approaches to overcome resistance and improve the outcomes of patients. In this context, the use of novel FLT3 inhibitors and the combination of different targeted therapies have been studied. This review provides an update on the molecular alterations involved in the resistance to FLT3 inhibitors, and describes how the molecular monitoring may be used to guide treatment strategy in FLT3-mutated AML.
Collapse
Affiliation(s)
- Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gaspare Tancredi
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Maria Livia Del Giudice
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Sandra Mechelli
- Unit of Internal Medicine 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Romano Danesi
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
4
|
He Y, Long K, Du B, Liao W, Zou R, Su J, Luo J, Shi Z, Wang L. The cellular senescence score (CSS) is a comprehensive biomarker to predict prognosis and assess senescence and immune characteristics in hepatocellular carcinoma (HCC). Biochem Biophys Res Commun 2024; 739:150576. [PMID: 39178796 DOI: 10.1016/j.bbrc.2024.150576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Affiliation(s)
- Yutao He
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Kui Long
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Bin Du
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Weiran Liao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Renchao Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Jifeng Su
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Jiong Luo
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China
| | - Zhitian Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China.
| | - Lin Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, NO.374 Dianmian Road, Kunming City, Yunnan Province, 650101, China.
| |
Collapse
|
5
|
Osbourne R, Thayer KM. Structural and mechanistic diversity in p53-mediated regulation of organismal longevity across taxonomical orders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606567. [PMID: 39149312 PMCID: PMC11326148 DOI: 10.1101/2024.08.05.606567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The accumulation of senescent cells induces several aging phenotypes, and the p53 tumor suppressor protein regulates one of the two known cellular senescence pathways. p53's regulation of senescence is however not clear. For example, p53 deficiency in some mice has been shown to rescue premature aging while others display significant aging phenotype when p53-deficient. This study seeks to elucidate, structurally and mechanistically, p53's roles in longevity. Through a relative evolutionary scoring (RES) algorithm, we quantify the level of evolutionary change in the residues of p53 across organisms of varying average lifespans in six taxonomic orders. Secondly, we used PEPPI to assess the likelihood of interaction between p53-or p53-linked proteins-and known senescence-regulating proteins across organisms in the orders Primates and Perciformes. Our RES algorithm found variations in the alignments within and across orders, suggesting that mechanisms of p53-mediated regulation of longevity may vary. PEPPI results suggest that longer-lived species may have evolved to regulate induction and inhibition of cellular senescence better than their shorter-lived counterparts. With experimental verification, these predictions could help elucidate the mechanisms of p53-mediated cellular senescence, ultimately clarifying our understanding of p53's connection to aging in a multiple-species context.
Collapse
Affiliation(s)
- Romani Osbourne
- Department of Molecular Biology & Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
- College of Integrative Sciences, Wesleyan University, Middletown, Connecticut, United States of America
| | - Kelly M. Thayer
- College of Integrative Sciences, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
6
|
Tarighi S, Kumari P, Vaquero A, Braun T, Ianni A. The SIRT7-nucleolus connection in cancer: ARF enters the fray. Mol Cell Oncol 2024; 11:2381287. [PMID: 39036727 PMCID: PMC11259054 DOI: 10.1080/23723556.2024.2381287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The nucleolar enzyme sirtuin 7 (SIRT7) promotes cancer progression in certain malignancies, likely in part by controlling ribosome biosynthesis. Recently, we discovered that SIRT7 destabilizes the cyclin dependent kinase inhibitor 2A (CDKN2A, known as ARF) within the nucleolus, aiding cancer progression. We propose that targeting nucleolar SIRT7 offers promise for new anti-cancer therapies.
Collapse
Affiliation(s)
- Shahriar Tarighi
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Poonam Kumari
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Member of The German Center for Lung Research (DZL), Member of The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Alessandro Ianni
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| |
Collapse
|
7
|
Kapitonova AA, Perfilova KV, Cooley RB, Sluchanko NN. Phosphorylation Code of Human Nucleophosmin Includes Four Cryptic Sites for Hierarchical Binding of 14-3-3 Proteins. J Mol Biol 2024; 436:168592. [PMID: 38702038 DOI: 10.1016/j.jmb.2024.168592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Nucleophosmin (NPM1) is the 46th most abundant human protein with many functions whose dysregulation leads to various cancers. Pentameric NPM1 resides in the nucleolus but can also shuttle to the cytosol. NPM1 is regulated by multisite phosphorylation, yet molecular consequences of site-specific NPM1 phosphorylation remain elusive. Here we identify four 14-3-3 protein binding sites in NPM1 concealed within its oligomerization and α-helical C-terminal domains that are found phosphorylated in vivo. By combining mutagenesis, in-cell phosphorylation and PermaPhos technology for site-directed incorporation of a non-hydrolyzable phosphoserine mimic, we show how phosphorylation promotes NPM1 monomerization and partial unfolding, to recruit 14-3-3 dimers with low-micromolar affinity. Using fluorescence anisotropy we quantified pairwise interactions of all seven human 14-3-3 isoforms with four recombinant NPM1 phosphopeptides and assessed their druggability by fusicoccin. This revealed a complex hierarchy of 14-3-3 affinities toward the primary (S48, S293) and secondary (S106, S260) sites, differentially modulated by the small molecule. As three of these 14-3-3 binding phosphosites in NPM1 reside within signal sequences, this work suggests a mechanism of NPM1 regulation by which NPM1 phosphorylation can promote 14-3-3 binding to affect NPM1 shuttling between cell compartments. It also provides further evidence that phosphorylation-induced structural rearrangements of globular proteins serve to expose otherwise cryptic 14-3-3-binding sites that are important for cellular function.
Collapse
Affiliation(s)
- Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Kristina V Perfilova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Richard B Cooley
- GCE4All Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
| |
Collapse
|
8
|
Cammann E, Madhav S, Hutchinson L, Cerny J, Ramanathan M, Bledsoe JR, Makarenko V, Patel SA, Meng X, Tomaszewicz K, Nath R, Chen B, Woda B, Selove W. Frameshift Mutations in Leukemia-Associated Genes Correlate With Superior Outcomes in Patients Undergoing Allogeneic Stem Cell Transplant for De Novo Acute Myeloid Leukemia. J Hematol 2024; 13:86-93. [PMID: 38993741 PMCID: PMC11236359 DOI: 10.14740/jh1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Background Allogeneic stem cell transplant (allo-SCT) is a mainstay of treatment for acute myeloid leukemia (AML). Its success depends largely on response of donor T lymphocytes against leukemia cells, known as graft-vs-leukemia (GvL) effect. A key potential driver of GvL is immune response to mutation-derived neoantigens. Previous studies in solid tumors have demonstrated enhanced immunogenicity of frameshift (FS)-derived peptides vs. those from non-synonymous single nucleotide variants (SNVs). We therefore hypothesized that AML cases bearing FS mutations in leukemia-associated genes would be more immunogenic than those with only other types of mutations (non-FS), and thus benefit more from allo-SCT via more robust GvL. Methods We identified AML patients who had undergone allo-SCT between 2010 and 2022 and had next-generation sequencing data available on diagnostic specimens using a 42-gene hot spot panel. We compared the impact of tumor mutations present at diagnosis on overall survival and relapse-free survival based on FS versus non-FS status. Results Ninety-five AML allo-SCT patients were identified. We observed superior relapse-free survival (P = 0.038, hazard ratio (HR): 0.24) and borderline superior overall survival (P = 0.058, HR: 0.55) post-transplant in de novo AML patients, who had at least one FS mutation (other than NPM1) in one of the 42 assessed genes versus those with only non-FS mutations. Conclusions Our findings suggest that FS-mutated AML cases may benefit more from allo-SCT than those with only non-FS mutations, possibly due to increased generation of immunogenic neoepitopes. If validated in an expanded study, incorporation of somatic FS mutation status in AML could improve patient selection algorithms for bone marrow transplant and thereby lead to superior outcomes.
Collapse
Affiliation(s)
| | - Sindha Madhav
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - Lloyd Hutchinson
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - Jan Cerny
- Department of Hematology-Oncology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - Muthalagu Ramanathan
- Department of Hematology-Oncology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - Jacob R Bledsoe
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | | | - Shyam A Patel
- Department of Hematology-Oncology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - Xiuling Meng
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - Keith Tomaszewicz
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - Rajneesh Nath
- Department of Hematology, Medical Oncology, Banner MD Anderson Cancer Center Clinic, Gilbert, AZ, USA
| | | | - Bruce Woda
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| | - William Selove
- UMass Medical School, Worcester, MA, USA
- Department of Pathology, Baystate Medical Center, Springfield, MA, USA
| |
Collapse
|
9
|
Selheim F, Aasebø E, Reikvam H, Bruserud Ø, Hernandez-Valladares M. Monocytic Differentiation of Human Acute Myeloid Leukemia Cells: A Proteomic and Phosphoproteomic Comparison of FAB-M4/M5 Patients with and without Nucleophosmin 1 Mutations. Int J Mol Sci 2024; 25:5080. [PMID: 38791118 PMCID: PMC11121526 DOI: 10.3390/ijms25105080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Even though morphological signs of differentiation have a minimal impact on survival after intensive cytotoxic therapy for acute myeloid leukemia (AML), monocytic AML cell differentiation (i.e., classified as French/American/British (FAB) subtypes M4/M5) is associated with a different responsiveness both to Bcl-2 inhibition (decreased responsiveness) and possibly also bromodomain inhibition (increased responsiveness). FAB-M4/M5 patients are heterogeneous with regard to genetic abnormalities, even though monocytic differentiation is common for patients with Nucleophosmin 1 (NPM1) insertions/mutations; to further study the heterogeneity of FAB-M4/M5 patients we did a proteomic and phosphoproteomic comparison of FAB-M4/M5 patients with (n = 13) and without (n = 12) NPM1 mutations. The proteomic profile of NPM1-mutated FAB-M4/M5 patients was characterized by increased levels of proteins involved in the regulation of endocytosis/vesicle trafficking/organellar communication. In contrast, AML cells without NPM1 mutations were characterized by increased levels of several proteins involved in the regulation of cytoplasmic translation, including a large number of ribosomal proteins. The phosphoproteomic differences between the two groups were less extensive but reflected similar differences. To conclude, even though FAB classification/monocytic differentiation are associated with differences in responsiveness to new targeted therapies (e.g., Bcl-2 inhibition), our results shows that FAB-M4/M5 patients are heterogeneous with regard to important biological characteristics of the leukemic cells.
Collapse
Affiliation(s)
- Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Elise Aasebø
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.); (Ø.B.)
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.); (Ø.B.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.); (Ø.B.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
10
|
Jiao M, Wang X, Ji Y, Su J, Li G. Potential key genes are expected to become biomarker for early diagnosis of colorectal cancer through bioinformatics analysis. Biotechnol Genet Eng Rev 2024; 40:678-691. [PMID: 36880415 DOI: 10.1080/02648725.2023.2186586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023]
Abstract
Colorectal cancer (CRC) is the leading cause of cancer-related deaths in the world. The aim of this study was to identify the potential key genes, and associated pathways for early-onset CRC through bioinformatics methods. We integrated the gene expression patterns of CRC from three RNAseq datasets (GSE8671, GSE20916, GSE39582) from GEO database to identify DEGs between CRC and normal samples. We established a gene co-expression network through WGCNA. Through the WGCNA calculation, the genes were divided into six modules. The WGCNA analysis screened 242 genes associated with pathological stage and colorectal adenocarcinoma, 31 of which had the ability to predict OS with an AUC >0.7. The GSE39582 dataset identified 2040 DEGs between the CRC and normal samples. The two were intersected to obtain two genes: NPM1 and PANK3. The two genes were used as a threshold to divide the samples into high group and low group for survival analysis. Survival analysis showed that increased expression of both genes was significantly associated with a poorer prognosis. These two genes (NPM1 and PANK3) could be possible marker genes for early diagnosis of CRC, providing ideas for other experimental studies in the future.
Collapse
Affiliation(s)
- Meng Jiao
- Department of Gastrointestinal Surgery, The second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Xin Wang
- Department of Gastrointestinal Surgery, The second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Yuanyuan Ji
- Department of Rehabilitation, Taishan Vocational College of Nursing, Tai'an, China
| | - Jing Su
- Department of Ultrasound, The first people's Hospital of Tai'an, Tai'an, China
| | - Guodong Li
- Department of Gastrointestinal Surgery, The second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| |
Collapse
|
11
|
Wysota M, Konopleva M, Mitchell S. Novel Therapeutic Targets in Acute Myeloid Leukemia (AML). Curr Oncol Rep 2024; 26:409-420. [PMID: 38502417 PMCID: PMC11021231 DOI: 10.1007/s11912-024-01503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE OF REVIEW This review seeks to identify and describe novel genetic and protein targets and their associated therapeutics currently being used or studied in the treatment of acute myeloid leukemia (AML). RECENT FINDINGS Over the course of the last 5-6 years, several targeted therapies have been approved by the FDA, for the treatment of both newly diagnosed as well as relapsed/refractory AML. These novel therapeutics, as well as several others currently under investigation, have demonstrated activity in AML and have improved outcomes for many patients. Patient outcomes in AML have slowly improved over time, though for many patients, particularly elderly patients or those with relapsed/refractory disease, mortality remains very high. With the identification of several molecular/genetic drivers and protein targets and development of therapeutics which leverage those mechanisms to target leukemic cells, outcomes for patients with AML have improved and continue to improve significantly.
Collapse
Affiliation(s)
- Michael Wysota
- Department of Oncology, Montefiore Medical Center, 111 East 210 Street, Bronx, NY, 10467, USA.
| | - Marina Konopleva
- Montefiore Medical Center/Albert Einstein College of Medicine, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Ullmann Building, 1300 Morris Park AvenueRoom 915, Bronx, NY, 10461, USA.
| | | |
Collapse
|
12
|
Kapitonova AA, Perfilova KV, Cooley RB, Sluchanko NN. Phosphorylation code of human nucleophosmin includes four cryptic sites for hierarchical binding of 14-3-3 proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580064. [PMID: 38405961 PMCID: PMC10888825 DOI: 10.1101/2024.02.13.580064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Nucleophosmin (NPM1) is the 46th most abundant human protein with many functions whose dysregulation leads to various cancers. Pentameric NPM1 resides in the nucleolus but can also shuttle to the cytosol. NPM1 is regulated by multisite phosphorylation, yet molecular consequences of site-specific NPM1 phosphorylation remain elusive. Here we identify four 14-3-3 protein binding sites in NPM1 concealed within its oligomerization and α-helical C-terminal domains that are found phosphorylated in vivo. By combining mutagenesis, in-cell phosphorylation and PermaPhos technology for site-directed incorporation of a non-hydrolyzable phosphoserine mimic, we show how phosphorylation promotes NPM1 monomerization and partial unfolding, to recruit 14-3-3 dimers with low-micromolar affinity. Using fluorescence anisotropy we quantified pairwise interactions of all seven human 14-3-3 isoforms with four recombinant NPM1 phosphopeptides and assessed their druggability by fusicoccin. This revealed a complex hierarchy of 14-3-3 affinities toward the primary (S48, S293) and secondary (S106, S260) sites, differentially modulated by the small molecule. As three of these 14-3-3 binding phospho-sites in NPM1 reside within signal sequences, this work highlights a key mechanism of NPM1 regulation by which NPM1 phosphorylation promotes 14-3-3 binding to control nucleocytoplasmic shuttling. It also provides further evidence that phosphorylation-induced structural rearrangements of globular proteins serve to expose otherwise cryptic 14-3-3-binding sites that are important for cellular function.
Collapse
Affiliation(s)
- Anna A. Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Kristina V. Perfilova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Richard B. Cooley
- GCE4All Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Nikolai N. Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
13
|
Florio D, Marasco D. Could Targeting NPM1c+ Misfolding Be a Promising Strategy for Combating Acute Myeloid Leukemia? Int J Mol Sci 2024; 25:811. [PMID: 38255885 PMCID: PMC10815591 DOI: 10.3390/ijms25020811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of diseases classified into various types on the basis of distinct features concerning the morphology, cytochemistry and cytogenesis of leukemic cells. Among the different subtypes, the group "AML with gene mutations" includes the variations of the gene of the multifunctional protein nucleophosmin 1 (NPM1). These mutations are the most frequent (~30-35% of AML adult patients and less in pediatric ones) and occur predominantly in the C-terminal domain (CTD) of NPM1. The most important mutation is the insertion at W288, which determines the frame shift W288Cfs12/Ffs12/Lfs*12 and leads to the addition of 2-12 amino acids, which hamper the correct folding of NPM1. This mutation leads to the loss of the nuclear localization signal (NoLS) and to aberrant cytoplasmic localization, denoted as NPM1c+. Many investigations demonstrated that interfering with the cellular location and oligomerization status of NPM1 can influence its biological functions, including the proper buildup of the nucleolus, and therapeutic strategies have been proposed to target NPM1c+, particularly the use of drugs able to re-direct NPM1 localization. Our studies unveiled a direct link between AML mutations and the neat amyloidogenic character of the CTDs of NPM1c+. Herein, with the aim of exploiting these conformational features, novel therapeutic strategies are proposed that rely on the induction of the selective self-cytotoxicity of leukemic blasts by focusing on agents such as peptides, peptoids or small molecules able to enhance amyloid aggregation and targeting selectively AML-NPM1c+ mutations.
Collapse
Affiliation(s)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| |
Collapse
|
14
|
Aryal S, Lu R. HOXA9 Regulome and Pharmacological Interventions in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:405-430. [PMID: 39017854 DOI: 10.1007/978-3-031-62731-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
HOXA9, an important transcription factor (TF) in hematopoiesis, is aberrantly expressed in numerous cases of both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and is a strong indicator of poor prognosis in patients. HOXA9 is a proto-oncogene which is both sufficient and necessary for leukemia transformation. HOXA9 expression in leukemia correlates with patient survival outcomes and response to therapy. Chromosomal transformations (such as NUP98-HOXA9), mutations, epigenetic dysregulation (e.g., MLL- MENIN -LEDGF complex or DOT1L/KMT4), transcription factors (such as USF1/USF2), and noncoding RNA (such as HOTTIP and HOTAIR) regulate HOXA9 mRNA and protein during leukemia. HOXA9 regulates survival, self-renewal, and progenitor cell cycle through several of its downstream target TFs including LMO2, antiapoptotic BCL2, SOX4, and receptor tyrosine kinase FLT3 and STAT5. This dynamic and multilayered HOXA9 regulome provides new therapeutic opportunities, including inhibitors targeting DOT1L/KMT4, MENIN, NPM1, and ENL proteins. Recent findings also suggest that HOXA9 maintains leukemia by actively repressing myeloid differentiation genes. This chapter summarizes the recent advances understanding biochemical mechanisms underlying HOXA9-mediated leukemogenesis, the clinical significance of its abnormal expression, and pharmacological approaches to treat HOXA9-driven leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
15
|
Wu PS, Wang CY, Hsu HJ, Yen JH, Wu MJ. 8-Hydroxydaidzein Induces Apoptosis and Inhibits AML-Associated Gene Expression in U-937 Cells: Potential Phytochemical for AML Treatment. Biomolecules 2023; 13:1575. [PMID: 38002257 PMCID: PMC10669020 DOI: 10.3390/biom13111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND 8-hydroxydaidzein (8-OHD) is a compound derived from daidzein, known for its anti-inflammatory and anti-proliferative properties in K562 human chronic myeloid leukemia (CML) cells. However, its effects on acute myeloid leukemia (AML) cells have not been fully understood. METHOD To investigate its potential anti-AML mechanism, we employed an integrated in vitro-in silico approach. RESULTS Our findings demonstrate that 8-OHD suppresses the expression of CDK6 and CCND2 proteins and induces cell apoptosis in U-937 cells by activating Caspase-7 and cleaving PARP-1. Microarray analysis revealed that 8-OHD downregulates differentially expressed genes (DEGs) associated with rRNA processing and ribosome biogenesis pathways. Moreover, AML-target genes, including CCND2, MYC, NPM1, FLT3, and TERT, were downregulated by 8-OHD. Additionally, molecular docking software predicted that 8-OHD has the potential to interact with CDK6, FLT3, and TERT proteins, thereby reducing their activity and inhibiting cell proliferation. Notably, we discovered a synergic pharmacological interaction between 8-OHD and cytarabine (Ara-C). CONCLUSIONS Overall, this study provides insights into the therapeutic applications of 8-OHD in treating AML and elucidates its underlying mechanisms of action.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan;
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 110301, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110301, Taiwan
| | - Hao-Jen Hsu
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 970, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Ming-Jiuan Wu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan;
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717301, Taiwan
| |
Collapse
|
16
|
Liang F, Luo Q, Han H, Zhang J, Yang Y, Chen J. Long noncoding RNA LINC01088 inhibits esophageal squamous cell carcinoma progression by targeting the NPM1-HDM2-p53 axis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:367-381. [PMID: 36942988 PMCID: PMC10160232 DOI: 10.3724/abbs.2023021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is characterized by extensive metastasis and poor prognosis. Long noncoding RNAs (lncRNAs) have been shown to play important roles in ESCC. However, the specific roles of lncRNAs in ESCC tumorigenesis and metastasis remain largely unknown. Here, we investigate LINC01088 in ESCC. Differentially expressed LINC01088 levels are screened from the GEO database. We find that LINC01088 is expressed at low level in collected clinical samples and is correlated with vascular tumor emboli and poor overall survival time of patients after surgery. LINC01088 inhibits not only ESCC cell migration and invasion in vitro, but also tumorigenesis and metastasis in vivo. Mechanistically, LINC01088 directly interacts with nucleophosmin (NPM1) and increases the expression of NPM1 in the nucleoplasm compared to that in the nucleolar region. LINC01088 decreases mutant p53 (mut-p53) expression and rescues the transcriptional activity of p53 by targeting the NPM1-HDM2-p53 axis. LINC01088 may also interfere with the DNA repair function of NPM1 by affecting its translocation. Our results highlight the potential of LINC01088 as a prognostic biomarker and therapeutic target of ESCC.
Collapse
Affiliation(s)
- Fan Liang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qiuli Luo
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100020, China
| | - Haibo Han
- Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jianzhi Zhang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yue Yang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jinfeng Chen
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
17
|
Borkovskaia A, Bogacheva S, Konyukhova T, Dadakhanova E, Gaskova M, Soldatkina O, Dubrovina M, Popov A, Mikhailova E, Inushkina E, Kazanov M, Matveev E, Novichkova G, Maschan M, Maschan A, Olshanskaya Y, Zerkalenkova E. Molecular Heterogeneity of Pediatric AML with Atypical Promyelocytes Accumulation in Children—A Single Center Experience. Genes (Basel) 2023; 14:genes14030675. [PMID: 36980947 PMCID: PMC10048084 DOI: 10.3390/genes14030675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Acute promyelocytic leukemia (APL) pathogenesis is based on RARA gene translocations, which are of high importance in the diagnosis of and proper therapy selection for APL. However, in some cases acute myeloid leukemia (AML) demonstrates APL-like morphological features such as atypical promyelocytes accumulation. This type of AML is characterized by the involvement of other RAR family members or completely different genes. In the present study, we used conventional karyotyping, FISH and high-throughput sequencing in a group of 271 de novo AML with atypical promyelocytes accumulation. Of those, 255 cases were shown to carry a typical chromosomal translocation t(15;17)(q24;q21) with PML::RARA chimeric gene formation (94.1%). Other RARA-positive cases exhibited cryptic PML::RARA fusion without t(15;17)(q24;q21) (1.8%, n = 5) and variant t(5;17)(q35;q21) translocation with NPM1::RARA chimeric gene formation (1.5%, n = 4). However, 7 RARA-negative AMLs with atypical promyelocytes accumulation were also discovered. These cases exhibited TBL1XR1::RARB and KMT2A::SEPT6 fusions as well as mutations, e.g., NPM1 insertion and non-recurrent chromosomal aberrations. Our findings demonstrate the genetic diversity of AML with APL-like morphological features, which is of high importance for successful therapy implementation.
Collapse
Affiliation(s)
- Aleksandra Borkovskaia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Sofia Bogacheva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Tatiana Konyukhova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Elina Dadakhanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Marina Gaskova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Olga Soldatkina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Maria Dubrovina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Ekaterina Mikhailova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Evgenia Inushkina
- Moscow Regional Oncology Hospital, Karbisheva Str. 6, 143900 Balashikha, Russia
| | - Marat Kazanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
- Institute for Information Transmission Problems (the Kharkevich Institute, RAS), Bolshoy Karetny per. 19, bld. 1, 127051 Moscow, Russia
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Evgeniy Matveev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
- Institute for Information Transmission Problems (the Kharkevich Institute, RAS), Bolshoy Karetny per. 19, bld. 1, 127051 Moscow, Russia
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Michael Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Alexey Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Yulia Olshanskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
| | - Elena Zerkalenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str. 1, 117998 Moscow, Russia
- Correspondence:
| |
Collapse
|
18
|
Nishida H, Kondo Y, Kusaba T, Kawamura K, Oyama Y, Daa T. CD8/PD-L1 immunohistochemical reactivity and gene alterations in cutaneous squamous cell carcinoma. PLoS One 2023; 18:e0281647. [PMID: 36780540 PMCID: PMC9925078 DOI: 10.1371/journal.pone.0281647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
In recent years, several immune checkpoint inhibitors targeting programmed death-ligand 1 (PD-L1) or PD-1 have been developed for cancer therapy. The genetic background of tumors and factors that influence PD-L1 expression in tumor tissues are not yet elucidated in cutaneous squamous cell carcinoma (cSCC). CD8-positive tumor-infiltrating lymphocytes (TILs) are known to be related to tumor immunity. Here, we aimed to study the relationship between CD8/PD-L1 immunohistochemical reactivity and gene alterations in cSCC. Tumorigenic genes were examined to identify gene alterations using next-generation sequencing (NGS). We collected 27 cSCC tissue samples (from 13 metastatic and 14 non-metastatic patients at primary diagnosis). We performed immunohistochemical staining for CD8 and PD-L1, and NGS using a commercially available sequencing panel (Illumina Cancer Hotspot Panel V2) that targets 50 cancer-associated genes. Immunohistochemically, CD8-positive TILs showed a high positive score in cSCC without metastasis; in these cases, cSCC occurred predominantly in sun-exposed areas, the tumor size was smaller, and the total gene variation numbers were notably low. The tumor depth, PD-L1 positivity, and gene variation number with or without tumor metastasis were not related, but the gene variation number tended to be higher in cSCCs arising in non-sun-exposed areas. Tumor metastasis was more common in cSCC arising in non-sun-exposed areas, which decreased the number of TILs or CD8-positive cells. From a genetic perspective, the total gene alterations were higher in cSCC with metastasis. Among them, ERBB4 and NPM1 are presumably involved in cSCC tumorigenesis; in addition, GNAQ, GNAS, JAK2, NRAS, IDH2, and CTNNB1 may be related to tumor metastasis. These results provide information on potential genes that can be targeted for cSCC therapy and on immune checkpoint inhibitors that may be used for cSCC therapy.
Collapse
Affiliation(s)
- Haruto Nishida
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
- * E-mail:
| | - Yoshihiko Kondo
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takahiro Kusaba
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazuhiro Kawamura
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yuzo Oyama
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
19
|
Strange Bedfellows: NPM1 Mutations in Acute Promyelocytic Leukemia. Hematol Oncol Stem Cell Ther 2023; 16:91-93. [PMID: 36634276 DOI: 10.1016/j.hemonc.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/28/2020] [Indexed: 01/27/2023] Open
|
20
|
Webster SF, Ghalei H. Maturation of small nucleolar RNAs: from production to function. RNA Biol 2023; 20:715-736. [PMID: 37796118 PMCID: PMC10557570 DOI: 10.1080/15476286.2023.2254540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Small Nucleolar RNAs (snoRNAs) are an abundant group of non-coding RNAs with well-defined roles in ribosomal RNA processing, folding and chemical modification. Besides their classic roles in ribosome biogenesis, snoRNAs are also implicated in several other cellular activities including regulation of splicing, transcription, RNA editing, cellular trafficking, and miRNA-like functions. Mature snoRNAs must undergo a series of processing steps tightly regulated by transiently associating factors and coordinated with other cellular processes including transcription and splicing. In addition to their mature forms, snoRNAs can contribute to gene expression regulation through their derivatives and degradation products. Here, we review the current knowledge on mechanisms of snoRNA maturation, including the different pathways of processing, and the regulatory mechanisms that control snoRNA levels and complex assembly. We also discuss the significance of studying snoRNA maturation, highlight the gaps in the current knowledge and suggest directions for future research in this area.
Collapse
Affiliation(s)
- Sarah F. Webster
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Aryal S, Zhang Y, Wren S, Li C, Lu R. Molecular regulators of HOXA9 in acute myeloid leukemia. FEBS J 2023; 290:321-339. [PMID: 34743404 DOI: 10.1111/febs.16268] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Dysregulation of the oncogenic transcription factor HOXA9 is a prominent feature for most aggressive acute myeloid leukemia cases and a strong indicator of poor prognosis in patients. Leukemia subtypes with hallmark overexpression of HOXA9 include those carrying MLL gene rearrangements, NPM1c mutations, and other genetic alternations. A growing body of evidence indicates that HOXA9 dysregulation is both sufficient and necessary for leukemic transformation. The HOXA9 mRNA and protein regulation includes multilayered controls by transcription factors (such as CDX2/4 and USF2/1), epigenetic factors (such as MLL-menin-LEDGF, DOT1L, ENL, HBO1, NPM1c-XPO1, and polycomb proteins), microRNAs (such as miR-126 and miR-196b), long noncoding RNAs (such as HOTTIP), three-dimensional chromatin interactions, and post-translational protein modifications. Recently, insights into the dynamic regulation of HOXA9 have led to an advanced understanding of the HOXA9 regulome and provided new cancer therapeutic opportunities, including developing inhibitors targeting DOT1L, menin, and ENL proteins. This review summarizes recent advances in understanding the molecular mechanisms controlling HOXA9 regulation and the pharmacological approaches that target HOXA9 regulators to treat HOXA9-driven acute myeloid leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Yang Zhang
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Spencer Wren
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Chunliang Li
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rui Lu
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
22
|
Meena JP, Pathak N, Gupta AK, Bakhshi S, Gupta R, Makkar H, Seth R. Molecular evaluation of gene mutation profiles and copy number variations in pediatric acute myeloid leukemia. Leuk Res 2022; 122:106954. [PMID: 36162216 DOI: 10.1016/j.leukres.2022.106954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/19/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The objectives of this study were to investigate the mutation profiles of targeted genes and copy number variations (CNVs) in normal cytogenetics (CN) pediatric acute myeloid leukemia (AML). METHODS This prospective study was conducted from October 2018 to December 2020. The next-generation sequencing (NGS) and chromosomal microarray analyses (CMA) were performed in pediatric CN-AML patients. RESULTS Out of 94 children (aged ≤18 years), 70 patients with AML (24 excluded) underwent conventional karyotyping/cytogenetic analyses. Forty-five (64.3%) of patients had abnormal/ recurrent cytogenetic abnormalities and 25 (35.7%) had normal cytogenetics. Twenty-three out of 25 CN-AML were further processed for gene mutation profile and CNVs using NGS and CMA, respectively. Twenty-two out of 23 (95.7%) patients were detected to have mutations in various genes. The common mutations were: NRAS, NPM1, CEBPA, KRAS, KIT, RUNX1, NOTCH1, WT1, GATA1, GATA2, FLT3, KMT2D, FLT3-TKD, and PHF6. Copy number variations (CNVs) were detected in nine patients (39%), and eight (34.8%) had a long contiguous stretch of homozygosity (LCSH) /loss of heterozygosity (LOH). An LCSH was detected on chromosomes 5, 7, 11, and 19. The gains were more common than losses (8 vs 2). The gains were observed on chromosomes 8, 9, 14, 19, 21, and 22, and the losses were detected on chromosomes 7 and 10. Monosomy was observed in three patients. Three patients (monosomy7, n = 2, and FLT-ITD, n = 1) were reclassified into the high-risk category. Post-induction, complete remission was achieved in all evaluable patients. CONCLUSION CN-AML patients have genetic abnormalities that can be detected by more advanced techniques like NGS and CMA. These genetic abnormalities play a role in risk stratification that may remain hidden in otherwise CN-AML.
Collapse
Affiliation(s)
- Jagdish Prasad Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Nivedita Pathak
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Harshita Makkar
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Rachna Seth
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
23
|
Pellegrina L, Vandin F. Discovering significant evolutionary trajectories in cancer phylogenies. Bioinformatics 2022; 38:ii49-ii55. [PMID: 36124798 DOI: 10.1093/bioinformatics/btac467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION Tumors are the result of a somatic evolutionary process leading to substantial intra-tumor heterogeneity. Single-cell and multi-region sequencing enable the detailed characterization of the clonal architecture of tumors and have highlighted its extensive diversity across tumors. While several computational methods have been developed to characterize the clonal composition and the evolutionary history of tumors, the identification of significantly conserved evolutionary trajectories across tumors is still a major challenge. RESULTS We present a new algorithm, MAximal tumor treeS TRajectOries (MASTRO), to discover significantly conserved evolutionary trajectories in cancer. MASTRO discovers all conserved trajectories in a collection of phylogenetic trees describing the evolution of a cohort of tumors, allowing the discovery of conserved complex relations between alterations. MASTRO assesses the significance of the trajectories using a conditional statistical test that captures the coherence in the order in which alterations are observed in different tumors. We apply MASTRO to data from nonsmall-cell lung cancer bulk sequencing and to acute myeloid leukemia data from single-cell panel sequencing, and find significant evolutionary trajectories recapitulating and extending the results reported in the original studies. AVAILABILITY AND IMPLEMENTATION MASTRO is available at https://github.com/VandinLab/MASTRO. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Leonardo Pellegrina
- Department of Information Engineering, University of Padova, Padova, 35129, Italy
| | - Fabio Vandin
- Department of Information Engineering, University of Padova, Padova, 35129, Italy
| |
Collapse
|
24
|
Liu XS, Liu C, Zeng J, Zeng DB, Chen YJ, Tan F, Gao Y, Liu XY, Zhang Y, Zhang YH, Pei ZJ. Nucleophosmin 1 is a prognostic marker of gastrointestinal cancer and is associated with m6A and cuproptosis. Front Pharmacol 2022; 13:1010879. [PMID: 36188614 PMCID: PMC9515486 DOI: 10.3389/fphar.2022.1010879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background: NPM1 is highly expressed in a variety of solid tumors and promotes tumor development. However, there are few comprehensive studies on NPM1 analysis in gastrointestinal cancer. Methods: We used bioinformatics tools to study the expression difference of NPM1 between gastrointestinal cancer and control group, and analyzed the relationship between its expression level and the diagnosis, prognosis, functional signaling pathway, immune infiltration, m6A and cuproptosis related genes of gastrointestinal cancer. At the same time, the expression difference of NPM1 between esophageal carcinoma (ESCA) samples and control samples was verified by in vitro experiments. Results: NPM1 was overexpressed in gastrointestinal cancer. In vitro experiments confirmed that the expression of NPM1 in ESCA samples was higher than that in normal samples. The expression of NPM1 has high accuracy in predicting the outcome of gastrointestinal cancer. The expression of NPM1 is closely related to the prognosis of multiple gastrointestinal cancers. Go and KEGG enrichment analysis showed that NPM1 co-expressed genes involved in a variety of biological functions. NPM1 expression is potentially associated with a variety of immune cell infiltration, m6A and cuproptosis related genes in gastrointestinal cancers. Conclusion: NPM1 can be used as a diagnostic and prognostic marker of gastrointestinal cancer, which is related to the immune cell infiltration and the regulation of m6A and cuproptosis.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Xu-Sheng Liu, ; Zhi-Jun Pei,
| | - Chao Liu
- Medical Imaging Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jing Zeng
- Department of Infection Control, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dao-Bing Zeng
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yi-Jia Chen
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Fan Tan
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Gao
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-Yu Liu
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu Zhang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yao-Hua Zhang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Xu-Sheng Liu, ; Zhi-Jun Pei,
| |
Collapse
|
25
|
Islam N, Reuben JS, Dale J, Gutman J, McMahon CM, Amaya M, Goodman B, Toninato J, Gasparetto M, Stevens B, Pei S, Gillen A, Staggs S, Engel K, Davis S, Hull M, Burke E, Larchick L, Zane R, Weller G, Jordan C, Smith C. Machine Learning–Based Exploratory Clinical Decision Support for Newly Diagnosed Patients With Acute Myeloid Leukemia Treated With 7 + 3 Type Chemotherapy or Venetoclax/Azacitidine. JCO Clin Cancer Inform 2022; 6:e2200030. [DOI: 10.1200/cci.22.00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE There are currently limited objective criteria to help assist physicians in determining whether an individual patient with acute myeloid leukemia (AML) is likely to do better with induction with either standard 7 + 3 chemotherapy or targeted therapy with venetoclax plus azacitidine. The study goal was to address this need by developing exploratory clinical decision support methods. PATIENTS AND METHODS Univariable and multivariable analysis as well as comparison of a range of machine learning (ML) predictors were performed using cohorts of 120 newly diagnosed 7 + 3-treated AML patients compared with 101 venetoclax plus azacitidine–treated patients. RESULTS A variety of features in the two patient cohorts were identified that may potentially correlate with short- and long-term outcomes, toxicities, and other considerations. A subset of these diagnostic features was then used to develop ML-based predictors with relatively high areas under the curve of short- and long-term outcomes, hospital stays, transfusion requirements, and toxicities for individual patients treated with either venetoclax/azacitidine or 7 + 3. CONCLUSION Potential ML-based approaches to clinical decision support to help guide individual patients with newly diagnosed AML to either 7 + 3 or venetoclax plus azacitidine induction therapy were identified. Larger cohorts with separate test and validation studies are necessary to confirm these initial findings.
Collapse
Affiliation(s)
| | | | - Justin Dale
- Department of Medicine, University of Colorado, Aurora, CO
| | - Jon Gutman
- Department of Medicine, University of Colorado, Aurora, CO
| | | | - Maria Amaya
- Department of Medicine, University of Colorado, Aurora, CO
| | | | | | | | - Brett Stevens
- Department of Medicine, University of Colorado, Aurora, CO
| | - Shanshan Pei
- Department of Medicine, University of Colorado, Aurora, CO
| | - Austin Gillen
- Department of Medicine, University of Colorado, Aurora, CO
| | - Sarah Staggs
- Department of Medicine, University of Colorado, Aurora, CO
| | - Krysta Engel
- Department of Medicine, University of Colorado, Aurora, CO
| | - Sarah Davis
- Department of Medicine, University of Colorado, Aurora, CO
| | - Madelyne Hull
- Health Data Compass, Colorado Center for Personalized Medicine, University of Colorado, Aurora, CO
| | | | | | - Richard Zane
- UCHealth Care Innovations and Department of Emergency Medicine, University of Colorado, Aurora, CO
| | | | - Craig Jordan
- Department of Medicine, University of Colorado, Aurora, CO
| | - Clay Smith
- Department of Medicine, University of Colorado, Aurora, CO
| |
Collapse
|
26
|
Kapitonova AA, Tugaeva KV, Varfolomeeva LA, Boyko KM, Cooley RB, Sluchanko NN. Structural basis for the recognition by 14-3-3 proteins of a conditional binding site within the oligomerization domain of human nucleophosmin. Biochem Biophys Res Commun 2022; 627:176-183. [PMID: 36041327 DOI: 10.1016/j.bbrc.2022.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
Abstract
Nucleophosmin 1 (NPM1) is a multifunctional protein regulating ribosome biogenesis, centrosome duplication and chromatin remodeling. Being a major nucleolar protein, NPM1 can migrate to the nucleus and the cytoplasm, which is controlled by changes of NPM1 oligomerization and interaction with other cell factors. NPM1 forms a stable pentamer with its N-terminal structured domain, where two nuclear export signals and several phosphorylation sites reside. This domain undergoes dissociation and disordering upon Ser48 phosphorylation in the subunit interface. Recent studies indicated that Ser48 is important for NPM1 interaction with other proteins including 14-3-3, the well-known phosphoserine/phosphothreonine binders, but the structural basis for 14-3-3/NPM1 interaction remained unaddressed. By fusing human 14-3-3ζ with an NPM1 segment surrounding Ser48, which was phosphorylated inside Escherichia coli cells by co-expressed protein kinase A, here we obtained the desired protein/phosphopeptide complex and determined its crystal structure. While biochemical data indicated that the interaction is driven by Ser48 phosphorylation, the crystallographic 14-3-3/phosphopeptide interface reveals an NPM1 conformation distinctly different from that in the NPM1 pentamer. Given the canonical phosphopeptide-binding mode observed in our crystal structure, Ser48 emerges as a conditional binding site whose recognition by 14-3-3 proteins is enabled by NPM1 phosphorylation, disassembly and disordering under physiological circumstances.
Collapse
Affiliation(s)
- Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
| |
Collapse
|
27
|
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246192. [PMID: 34944812 PMCID: PMC8699817 DOI: 10.3390/cancers13246192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia is a clinically and biologically heterogeneous blood cancer with variable prognosis and response to conventional therapies. Comprehensive sequencing enabled the discovery of recurrent mutations and chromosomal aberrations in AML. Mouse models are essential to study the biological function of these genes and to identify relevant drug targets. This comprehensive review describes the evidence currently available from mouse models for the leukemogenic function of mutations in seven functional gene groups: cell signaling genes, epigenetic modifier genes, nucleophosmin 1 (NPM1), transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes. Additionally, we provide a synergy map of frequently cooperating mutations in AML development and correlate prognosis of these mutations with leukemogenicity in mouse models to better understand the co-dependence of mutations in AML.
Collapse
|
28
|
Hoff FW, Horton TM, Kornblau SM. Reverse phase protein arrays in acute leukemia: investigative and methodological challenges. Expert Rev Proteomics 2021; 18:1087-1097. [PMID: 34965151 PMCID: PMC9148717 DOI: 10.1080/14789450.2021.2020655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Acute leukemia results from a series of mutational events that alter cell growth and proliferation. Mutations result in protein changes that orchestrate growth alterations characteristic of leukemia. Proteomics is a methodology appropriate for study of protein changes found in leukemia. The high-throughput reverse phase protein array (RPPA) technology is particularly well-suited for the assessment of protein changes in samples derived from clinical trials. AREAS COVERED This review discusses the technical, methodological, and analytical issues related to the successful development of acute leukemia RPPAs. EXPERT COMMENTARY To obtain representative protein sample lysates, samples should be prepared from freshly collected blood or bone marrow material. Variables such as sample shipment, transit time, and holding temperature only have minimal effects on protein expression. CellSave preservation tubes are preferred for cells collected after exposure to chemotherapy, and incorporation of standardized guidelines for antibody validation is recommended. A more systematic biological approach to analyze protein expression is desired, searching for recurrent patterns of protein expression that allow classification of patients into risk groups, or groups of patients that may be treated similarly. Comparing RPPA protein analysis between cell lines and primary samples shows that cell lines are not representative of patient proteomic patterns.
Collapse
Affiliation(s)
- Fieke W. Hoff
- Department of Internal Medicine, UT Southwestern Medical Center, TX, USA
| | - Terzah M. Horton
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Steven M. Kornblau
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
29
|
Gueiderikh A, Maczkowiak-Chartois F, Rosselli F. A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Rev 2021; 52:100904. [PMID: 34750031 DOI: 10.1016/j.blre.2021.100904] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Frédérique Maczkowiak-Chartois
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
30
|
El Achi H, Kanagal-Shamanna R. Biomarkers in Acute Myeloid Leukemia: Leveraging Next Generation Sequencing Data for Optimal Therapeutic Strategies. Front Oncol 2021; 11:748250. [PMID: 34660311 PMCID: PMC8514876 DOI: 10.3389/fonc.2021.748250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Next generation sequencing (NGS) is routinely used for mutation profiling of acute myeloid leukemia. The extensive application of NGS in hematologic malignancies, and its significant association with the outcomes in multiple large cohorts constituted a proof of concept that AML phenotype is driven by underlying mutational signature and is amenable for targeted therapies. These findings urged incorporation of molecular results into the latest World Health Organization (WHO) sub-classification and integration into risk-stratification and treatment guidelines by the European Leukemia Net. NGS mutation profiling provides a large amount of information that guides diagnosis and management, dependent on the type and number of gene mutations, variant allele frequency and amenability to targeted therapeutics. Hence, molecular mutational profiling is an integral component for work-up of AML and multiple leukemic entities. In addition, there is a vast amount of informative data that can be obtained from routine clinical NGS sequencing beyond diagnosis, prognostication and therapeutic targeting. These include identification of evidence regarding the ontogeny of the disease, underlying germline predisposition and clonal hematopoiesis, serial monitoring to assess the effectiveness of therapy and resistance mutations, which have broader implications for management. In this review, using a few prototypic genes in AML, we will summarize the clinical applications of NGS generated data for optimal AML management, with emphasis on the recently described entities and Food and Drug Administration approved target therapies.
Collapse
Affiliation(s)
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
31
|
Hindley A, Catherwood MA, McMullin MF, Mills KI. Significance of NPM1 Gene Mutations in AML. Int J Mol Sci 2021; 22:ijms221810040. [PMID: 34576201 PMCID: PMC8467861 DOI: 10.3390/ijms221810040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this literature review is to examine the significance of the nucleophosmin 1 (NPM1) gene in acute myeloid leukaemia (AML). This will include analysis of the structure and normal cellular function of NPM1, the type of mutations commonly witnessed in NPM1, and the mechanism by which this influences the development and progression of AML. The importance of NPM1 mutation on prognosis and the treatment options available to patients will also be reviewed along with current guidelines recommending the rapid return of NPM1 mutational screening results and the importance of employing a suitable laboratory assay to achieve this. Finally, future developments in the field including research into new therapies targeting NPM1 mutated AML are considered.
Collapse
Affiliation(s)
- Andrew Hindley
- Clinical Haematology, Belfast City Hospital, Belfast BT9 7AB, UK;
- Correspondence:
| | | | - Mary Frances McMullin
- Centre for Medical Education, Queen’s University Belfast, Belfast BT7 1NN, UK;
- Northern Ireland and Belfast Health and Social Care Trust, Belfast BT9 7AB, UK
| | - Ken I. Mills
- Patrick G Johnston Center for Cancer Research, Queens University Belfast, Belfast BT9 7AE, UK;
| |
Collapse
|
32
|
Aitken MJL, Ravandi F, Patel KP, Short NJ. Prognostic and therapeutic implications of measurable residual disease in acute myeloid leukemia. J Hematol Oncol 2021; 14:137. [PMID: 34479626 PMCID: PMC8417965 DOI: 10.1186/s13045-021-01148-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/25/2021] [Indexed: 01/10/2023] Open
Abstract
Quantification of measurable residual disease (MRD) provides critical prognostic information in acute myeloid leukemia (AML). A variety of platforms exist for MRD detection, varying in their sensitivity and applicability to individual patients. MRD detected by quantitative polymerase chain reaction, multiparameter flow cytometry, or next-generation sequencing has prognostic implications in various subsets of AML and at various times throughout treatment. While it is overwhelmingly evident that minute levels of remnant disease confer increased risk of relapse and shortened survival, the therapeutic implications of MRD remain less clear. The use of MRD as a guide to selecting the most optimal post-remission therapy, including hematopoietic stem cell transplant or maintenance therapy with hypomethylating agents, small molecule inhibitors, or immunotherapy is an area of active investigation. In addition, whether there are sufficient data to use MRD negativity as a surrogate endpoint in clinical trial development is controversial. In this review, we will critically examine the methods used to detect MRD, its role as a prognostic biomarker, MRD-directed therapeutics, and its potential role as a study endpoint.
Collapse
Affiliation(s)
- Marisa J L Aitken
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,McGovern Medical School, UT Health Science Center-Houston, Houston, TX, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
33
|
Therapeutic implications of menin inhibition in acute leukemias. Leukemia 2021; 35:2482-2495. [PMID: 34131281 DOI: 10.1038/s41375-021-01309-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/31/2023]
Abstract
Menin inhibitors are novel targeted agents currently in clinical development for the treatment of genetically defined subsets of acute leukemia. Menin has a tumor suppressor function in endocrine glands. Germline mutations in the gene encoding menin cause the multiple endocrine neoplasia type 1 (MEN1) syndrome, a hereditary condition associated with tumors of the endocrine glands. However, menin is also critical for leukemogenesis in subsets driven by rearrangement of the Lysine Methyltransferase 2A (KMT2A) gene, previously known as mixed-lineage leukemia (MLL), which encodes an epigenetic modifier. These seemingly opposing functions of menin can be explained by its various roles in gene regulation. Therefore, leukemias with rearrangement of KMT2A are predicted to respond to menin inhibition with early clinical data validating this proof-of-concept. These leukemias affect infants, children and adults, and lead to adverse outcomes with current standard therapies. Recent studies have identified novel targets in acute leukemia that are susceptible to menin inhibition, such as mutated Nucleophosmin 1 (NPM1), the most common genetic alteration in adult acute myeloid leukemia (AML). In addition to these alterations, other leukemia subsets with similar transcriptional dependency could be targeted through menin inhibition. This led to rationally designed clinical studies, investigating small-molecule oral menin inhibitors in relapsed acute leukemias with promising early results. Herein, we discuss the physiologic and malignant biology of menin, the mechanisms of leukemia in these susceptible subsets, and future therapeutic strategies using these inhibitors in acute leukemia.
Collapse
|
34
|
Maturation State-Specific Alternative Splicing in FLT3-ITD and NPM1 Mutated AML. Cancers (Basel) 2021; 13:cancers13163929. [PMID: 34439083 PMCID: PMC8394193 DOI: 10.3390/cancers13163929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In hematological malignancies, genome-wide sequencing studies found the process of splicing to be surprisingly frequently disrupted. While recent studies characterized altered splicing in relation to splicing factor mutations in AML, this study explored differential splicing profiles associated with two most common aberrations in AML: FLT3-ITD and NPM1 mutations. We identified the differential splicing of FAB-type specific gene sets in FLT3-ITD+/NPM1+ specimens as compared to FLT3-ITD−/NPM1− samples. The primary functions perturbed by differential splicing in all three FAB types included cell cycle control and DNA damage response. Interestingly, differential expression mainly affected genes involved in hematopoietic differentiation. Our findings increase our understanding of how genetic mutations translate to phenotypic features of AML cells to further improve response predictions and to find innovative therapeutic approaches. Altogether, to the best of our knowledge, this is the first study to report differential splicing profiles associated with FLT3-ITD with a concomitant NPM1 mutation in AML. Abstract Despite substantial progress achieved in unraveling the genetics of AML in the past decade, its treatment outcome has not substantially improved. Therefore, it is important to better understand how genetic mutations translate to phenotypic features of AML cells to further improve response predictions and to find innovative therapeutic approaches. In this respect, aberrant splicing is a crucial contributor to the pathogenesis of hematological malignancies. Thus far, altered splicing is well characterized in relation to splicing factor mutations in AML. However, splicing profiles associated with mutations in other genes remain largely unexplored. In this study, we explored differential splicing profiles associated with two of the most common aberrations in AML: FLT3-ITD and NPM1 mutations. Using RNA-sequencing data of a total of 382 primary AML samples, we found that the co-occurrence of FLT3-ITD and mutated NPM1 is associated with differential splicing of FAB-type specific gene sets. Despite the FAB-type specificity of particular gene sets, the primary functions perturbed by differential splicing in all three FAB types include cell cycle control and DNA damage response. Interestingly, we observed functional divergence between alternatively spliced and differentially expressed genes in FLT3-ITD+/NPM1+ samples in all analyzed FAB types, with differential expression affecting genes involved in hematopoietic differentiation. Altogether, these observations indicate that concomitant FLT3-ITD and mutated NPM1 are associated with the maturation state-specific differential splicing of genes with potential oncogenic relevance.
Collapse
|
35
|
Liu XS, Zhou LM, Yuan LL, Gao Y, Kui XY, Liu XY, Pei ZJ. NPM1 Is a Prognostic Biomarker Involved in Immune Infiltration of Lung Adenocarcinoma and Associated With m6A Modification and Glycolysis. Front Immunol 2021; 12:724741. [PMID: 34335635 PMCID: PMC8324208 DOI: 10.3389/fimmu.2021.724741] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Overexpression of NPM1 can promote the growth and proliferation of various tumor cells. However, there are few studies on the comprehensive analysis of NPM1 in lung adenocarcinoma (LUAD). Methods TCGA and GEO data sets were used to analyze the expression of NPM1 in LUAD and clinicopathological analysis. The GO/KEGG enrichment analysis of NPM1 co-expression and gene set enrichment analysis (GSEA) were performed using R software package. The relationship between NPM1 expression and LUAD immune infiltration was analyzed using TIMER, GEPIA database and TCGA data sets, and the relationship between NPM1 expression level and LUAD m6A modification and glycolysis was analyzed using TCGA and GEO data sets. Results NPM1 was overexpressed in a variety of tumors including LUAD, and the ROC curve showed that NPM1 had a certain accuracy in predicting the outcome of tumors and normal samples. The expression level of NPM1 in LUAD is significantly related to tumor stage and prognosis. The GO/KEGG enrichment analysis indicated that NPM1 was closely related to translational initiation, ribosome, structural constituent of ribosome, ribosome, Parkinson disease, and RNA transport. GSEA showed that the main enrichment pathway of NPM1-related differential genes was mainly related to mTORC1 mediated signaling, p53 hypoxia pathway, signaling by EGFR in cancer, antigen activates B cell receptor BCR leading to generation of second messengers, aerobic glycolysis and methylation pathways. The analysis of TIMER, GEPIA database and TCGA data sets showed that the expression level of NPM1 was negatively correlated with B cells and NK cells. The TCGA and GEO data sets analysis indicated that the NPM1 expression was significantly correlated with one m6A modifier related gene (HNRNPC) and five glycolysis related genes (ENO1, HK2, LDHA, LDHB and SLC2A1). Conclusion NPM1 is a prognostic biomarker involved in immune infiltration of LUAD and associated with m6A modification and glycolysis. NPM1 can be used as an effective target for diagnosis and treatment of LUAD.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, China
| | - Lu-Meng Zhou
- Department of Nuclear Medicine, Huanggang Central Hospital, Huanggang, China
| | - Ling-Ling Yuan
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xue-Yan Kui
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-Yu Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, China
| |
Collapse
|
36
|
Karimi Dermani F, Gholamzadeh Khoei S, Afshar S, Amini R. The potential role of nucleophosmin (NPM1) in the development of cancer. J Cell Physiol 2021; 236:7832-7852. [PMID: 33959979 DOI: 10.1002/jcp.30406] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022]
Abstract
Nucleophosmin (NPM1) is a well-known nucleocytoplasmic shuttling protein that performs several cellular functions such as ribosome biogenesis, chromatin remodeling, genomic stability, cell cycle progression, and apoptosis. NPM1 has been identified to be necessary for normal cellular functions, and its altered regulation by overexpression, mutation, translocation, loss of function, or sporadic deletion can lead to cancer and tumorigenesis. In this review, we focus on the gene and protein structure of NPM1 and its physiological roles. Finally, we discuss the association of NPM1 with various types of cancer including solid tumors and leukemia.
Collapse
Affiliation(s)
- Fateme Karimi Dermani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeideh Gholamzadeh Khoei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
37
|
Liu H, Zhang X, Li M, Zhou W, Jiang G, Yin W, Song C. The incidence and prognostic effect of Fms-like tyrosine kinase 3 gene internal tandem and nucleolar phosphoprotein 1 genes in acute myeloid leukaemia: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23707. [PMID: 33371116 PMCID: PMC7748362 DOI: 10.1097/md.0000000000023707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Molecular genotyping is an important prognostic role in acute myeloid leukemia (AML) patients. We aimed to design this meta-analysis to discuss the incidence and prognostic effect of nucleolar phosphoprotein 1 (NPM1) and Fms-like tyrosine kinase 3 gene internal tandem (FLT3-ITD) gene in AML patients. METHODS PubMed, Embase, Medline, and Cochrane library were systematically searched due to May 15, 2020. Four combinations of genotypes (FLT3-ITDneg/NPM1mut, FLT3-ITDpos/NPM1mut, FLT3-ITDneg/NPM1wt, FLT3-ITDpos/NPM1wt) were compared in association with the overall survival (OS) and leukemia-free survival (LFS) outcome, which expressed as pooled hazard ratio (HR) and 95% confidence intervals (CIs). RESULTS Twenty-eight studies were included in our study. The incidence of FLT3-ITDneg/NPM1mut, FLT3-ITDpos/NPM1mut, FLT3-ITDneg/NPM1wt, and FLT3-ITDpos/NPM1wt was 16%, 13%, 50%, and 10%, respectively. The patients with FLT3-ITDneg/NPM1mut gene may have the best OS and LFS when comparing with FLT3-ITDpos/NPM1mut (HR = 1.94 and 1.70, P < .01), FLT3-ITDneg/NPM1wt (HR = 1.57 and 2.09, P < .01), and FLT3-ITDpos/NPM1wt (HR = 2.25 and 2.84, P < .001). CONCLUSION AML patients with FLT3-ITDneg/NPM1mut gene type have the best survival outcome than the other 3 gene types, which should be an independent genotyping in AML classification.
Collapse
Affiliation(s)
| | | | - Ming Li
- Department of Laboratory Medicine
| | | | | | - Weihua Yin
- Department of Oncology, Yichun City People's Hospital
| | - Chunping Song
- Department of Blood Supply, Blood Station, Yichun City, Jiangxi Province, China
| |
Collapse
|