1
|
Cai K, Wang W, Wang X, Pang Z, Zhou Z, Cheng L, Qiao L, Liu Q, Pan Y, Yang K, Liu W, Liu J. Genetic Diversity and Selection Signatures of Lvliang Black Goat Using Genome-Wide SNP Data. Animals (Basel) 2024; 14:3154. [PMID: 39518877 PMCID: PMC11544794 DOI: 10.3390/ani14213154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Lvliang black goat (LBG) is an excellent local breed resource in China that is known for its black fur, excellent meat quality, and strong adaptability. Studying the genetic mechanism and germplasm characteristics of LBG can provide theoretical and practical basis for the protection of the genetic resources of this breed and help implement conservation and breeding. In this study, the genetic diversity of the LBG population was evaluated using whole-genome SNP data. It was found that the LBG population had a high genetic diversity and a low degree of inbreeding. According to the clustering results of male goats and the relationship between individuals, the LBG population was divided into 13 families. Then, through population structure analysis, it was found that LBG had a close genetic relationship with the Nanjiang goat and Qinggoda goat populations, and they may have the same ancestors. The LBG population has retained some ancient genetic characteristics and is a special population that integrates local genetic characteristics and foreign gene flow. Through four selection signal analyses, we detected multiple candidate genes related to economic traits (CFL2, SCD, NLRP14, etc.) and adaptability (C4BPA, FUT8, PRNP, etc.) in the LBG population. In addition, in a comparative analysis with three commercial breeds (Saanen goat, Boer goat and Angora goat) we also found multiple genes related to physical characteristics (ERG, NRG3, EDN3, etc.). Finally, we performed functional enrichment analysis on these genes and explored their genetic mechanisms. This study provides important data support for the protection and breeding of LBG and provides a new perspective for enriching the genetic diversity of goat populations.
Collapse
Affiliation(s)
- Ke Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Wannian Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Xu Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Zhixu Pang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Zhenqi Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Lifen Cheng
- Shanxi Animal Husbandry Technology Extension Service Center, Taiyuan 030001, China; (L.C.); (Q.L.)
| | - Liying Qiao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Qiaoxia Liu
- Shanxi Animal Husbandry Technology Extension Service Center, Taiyuan 030001, China; (L.C.); (Q.L.)
| | - Yangyang Pan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Kaijie Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Wenzhong Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
| | - Jianhua Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (K.C.); (W.W.); (X.W.); (Z.P.); (Z.Z.); (L.Q.); (Y.P.); (K.Y.); (W.L.)
- Key Laboratory of Farm Animal Genetic Resources Exploration and Precision Breeding of Shanxi Province, Jinzhong 030801, China
| |
Collapse
|
2
|
Wang R, Wang X, Qi Y, Li Y, Na Q, Yuan H, Rong Y, Ao X, Guo F, Zhang L, Liu Y, Shang F, Zhang Y, Wang Y. Genetic diversity analysis of Inner Mongolia cashmere goats (Erlangshan subtype) based on whole genome re-sequencing. BMC Genomics 2024; 25:698. [PMID: 39014331 PMCID: PMC11253418 DOI: 10.1186/s12864-024-10485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Inner Mongolia cashmere goat (IMCG), renowned for its superior cashmere quality, is a Chinese indigenous goat breed that has been developed through natural and artificial selection over a long period. However, recently, the genetic resources of IMCGs have been significantly threatened by the introduction of cosmopolitan goat breeds and the absence of adequate breed protection systems. RESULTS In order to assess the conservation effectiveness of IMCGs and efficiently preserve and utilize the purebred germplasm resources, this study analyzed the genetic diversity, kinship, family structure, and inbreeding of IMCGs utilizing resequencing data from 225 randomly selected individuals analyzed using the Plink (v.1.90), GCTA (v.1.94.1), and R (v.4.2.1) software. A total of 12,700,178 high-quality SNPs were selected through quality control from 34,248,064 SNP sites obtained from 225 individuals. The average minor allele frequency (MAF), polymorphic information content (PIC), and Shannon information index (SHI) were 0.253, 0.284, and 0.530, respectively. The average observed heterozygosity (Ho) and the average expected heterozygosity (He) were 0.355 and 0.351, respectively. The analysis of the identity by state distance matrix and genomic relationship matrix has shown that most individuals' genetic distance and genetic relationship are far away, and the inbreeding coefficient is low. The family structure analysis identified 10 families among the 23 rams. A total of 14,109 runs of homozygosity (ROH) were identified in the 225 individuals, with an average ROH length of 1014.547 kb. The average inbreeding coefficient, calculated from ROH, was 0.026 for the overall population and 0.027 specifically among the 23 rams, indicating a low level of inbreeding within the conserved population. CONCLUSIONS The IMCGs exhibited moderate polymorphism and a low level of kinship with inbreeding occurring among a limited number of individuals. Simultaneously, it is necessary to prevent the loss of bloodline to guarantee the perpetuation of the IMCGs' germplasm resources.
Collapse
Affiliation(s)
- Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xinle Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yunpeng Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yanbo Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qin Na
- Inner Mongolia Autonomous Region Agricultural and Animal Husbandry Technology Extension Center, Hohhot, 010010, China
| | - Huiping Yuan
- Bayannur Forestry and Grassland Career Development Center, Bayannur, 015006, China
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiaofang Ao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Furong Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lifei Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yan Liu
- College of Vocational and Technical, Inner Mongolia Agricultural University, Baotou, 014109, China
| | - Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, 010018, China.
- Key Laboratory of Goat and Sheep Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, 010018, China.
- Northern Agriculture and Livestock Husbandry Technology Innovation Center, Hohhot, 010018, China.
| | - Yu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
3
|
An ZX, Shi LG, Hou GY, Zhou HL, Xun WJ. Genetic diversity and selection signatures in Hainan black goats revealed by whole-genome sequencing data. Animal 2024; 18:101147. [PMID: 38843669 DOI: 10.1016/j.animal.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 06/22/2024] Open
Abstract
Understanding the genetic characteristics of indigenous goat breeds is crucial for their conservation and breeding efforts. Hainan black goats, as a native breed of south China's tropical island province of Hainan, possess distinctive traits such as black hair, a moderate growth rate, good meat quality, and small body size. However, they exhibit exceptional resilience to rough feeding conditions, possess high-quality meat, and show remarkable resistance to stress and heat. In this study, we resequenced the whole genome of Hainan black goats to study the economic traits and genetic basis of these goats, we leveraged whole-genome sequencing data from 33 Hainan black goats to analyze single nucleotide polymorphism (SNP) density, Runs of homozygosity (ROH), Integrated Haplotype Score (iHS), effective population size (Ne), Nucleotide diversity Analysis (Pi) and selection characteristics. Our findings revealed that Hainan black goats harbor a substantial degree of genetic variation, with a total of 23 608 983 SNPs identified. Analysis of ROHs identified 53 710 segments, predominantly composed of short fragments, with inbreeding events mainly occurring in ancient ancestors, the estimates of inbreeding based on ROH in Hainan black goats typically exhibit moderate values ranging from 0.107 to 0.186. This is primarily attributed to significant declines in the effective population size over recent generations. Moreover, we identified 921 candidate genes within the intersection candidate region of ROH and iHS. Several of these genes are associated with crucial traits such as immunity (PTPRC, HYAL1, HYAL2, HYAL3, CENPE and PKN1), heat tolerance (GNG2, MAPK8, CAPN2, SLC1A1 and LEPR), meat quality (ACOX1, SSTR1, CAMK2B, PPP2CA and PGM1), cashmere production (AKT4, CHRM2, OXTR, AKT3, HMCN1 and CDK19), and stress resistance (TLR2, IFI44, ENPP1, STK3 and NFATC1). The presence of these genes may be attributed to the genetic adaptation of Hainan black goats to local climate conditions. The insights gained from this study provide valuable references and a solid foundation for the preservation, breeding, and utilization of Hainan black goats and their valuable genetic resources.
Collapse
Affiliation(s)
- Z X An
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - L G Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - G Y Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - H L Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - W J Xun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Huang C, Zhao Q, Chen Q, Su Y, Ma Y, Ye S, Zhao Q. Runs of Homozygosity Detection and Selection Signature Analysis for Local Goat Breeds in Yunnan, China. Genes (Basel) 2024; 15:313. [PMID: 38540373 PMCID: PMC10970279 DOI: 10.3390/genes15030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 06/14/2024] Open
Abstract
Runs of Homozygosity (ROH) are continuous homozygous DNA segments in diploid genomes, which have been used to estimate the genetic diversity, inbreeding levels, and genes associated with specific traits in livestock. In this study, we analyzed the resequencing data from 10 local goat breeds in Yunnan province of China and five additional goat populations obtained from a public database. The ROH analysis revealed 21,029 ROH segments across the 15 populations, with an average length of 1.27 Mb, a pattern of ROH, and the assessment of the inbreeding coefficient indicating genetic diversity and varying levels of inbreeding. iHS (integrated haplotype score) was used to analyze high-frequency Single-Nucleotide Polymorphisms (SNPs) in ROH regions, specific genes related to economic traits such as coat color and weight variation. These candidate genes include OCA2 (OCA2 melanosomal transmembrane protein) and MLPH (melanophilin) associated with coat color, EPHA6 (EPH receptor A6) involved in litter size, CDKAL1 (CDK5 regulatory subunit associated protein 1 like 1) and POMC (proopiomelanocortin) linked to weight variation and some putative genes associated with high-altitude adaptability and immune. This study uncovers genetic diversity and inbreeding levels within local goat breeds in Yunnan province, China. The identification of specific genes associated with economic traits and adaptability provides actionable insights for utilization and conservation efforts.
Collapse
Affiliation(s)
- Chang Huang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.H.); (Q.Z.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qian Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.H.); (Q.Z.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qian Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yinxiao Su
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yuehui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Shaohui Ye
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.H.); (Q.Z.)
| | - Qianjun Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| |
Collapse
|
5
|
Vlaic BA, Vlaic A, Russo IR, Colli L, Bruford MW, Odagiu A, Orozco-terWengel P. Analysis of Genetic Diversity in Romanian Carpatina Goats Using SNP Genotyping Data. Animals (Basel) 2024; 14:560. [PMID: 38396528 PMCID: PMC10886219 DOI: 10.3390/ani14040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Animal husbandry is one of man's oldest occupations. It began with the domestication of animals and developed continuously, in parallel with the evolution of human society. The selection and improvement of goats in Romania was not a clearly defined objective until around 1980. In recent years, with the increasing economic value given to goats, breeding programs are becoming established. In Romania, a few goat genetic studies using microsatellites and mtDNA have been carried out; however, a systematic characterization of the country's goat genomic resources remains missing. In this study, we analyzed the genetic variability of Carpatina goats from four distinct geographical areas (northern, north-eastern, eastern and southern Romania), using the Illumina OvineSNP60 (RefSeq ARS1) high-density chip for 67 goats. Heterozygosity values, inbreeding coefficients and effective population size across all autosomes were calculated for those populations that inhabit high- and low-altitude and high- and low-temperature environments. Diversity, as measured by expected heterozygosity (HE), ranged from 0.413 in the group from a low-temperature environment to 0.420 in the group from a high-temperature environment. Within studied groups, the HT (high temperature) goats were the only group with a positive but low average inbreeding coefficient value, which was 0.009. After quality control (QC) analysis, 46,965 SNPs remained for analysis (MAF < 0.01). LD was calculated for each chromosome separately. The Ne has been declining since the time of domestication, having recently reached 123, 125, 185 and 92 for the HA (high altitude), LA (low altitude), HT (high temperature) and LT (low temperature) group, respectively. Our study revealed a low impact of inbreeding in the Carpatina population, and the Ne trend also indicated a steep decline in the last hundred years. These results will contribute to the genetic improvement of the Carpatina breed.
Collapse
Affiliation(s)
- Bogdan Alin Vlaic
- Department of Animal Breeding, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur Street 3–5, 400372 Cluj-Napoca, Romania;
| | - Augustin Vlaic
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur Street 3–5, 400372 Cluj-Napoca, Romania;
| | - Isa-Rita Russo
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK; (I.-R.R.); (M.W.B.)
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), BioDNA Centro di ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense n. 84, 29122 Piacenza, PC, Italy;
| | - Michael William Bruford
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK; (I.-R.R.); (M.W.B.)
| | - Antonia Odagiu
- Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur Street 3–5, 400372 Cluj-Napoca, Romania
| | - Pablo Orozco-terWengel
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK; (I.-R.R.); (M.W.B.)
| | | |
Collapse
|
6
|
Zhong T, Wang X, Huang C, Yang L, Zhao Q, Chen X, Freitas-de-Melo A, Zhan S, Wang L, Dai D, Cao J, Guo J, Li L, Zhang H, Niu L. A genome-wide perspective on the diversity and selection signatures in indigenous goats using 53 K single nucleotide polymorphism array. Animal 2023; 17:100706. [PMID: 36758301 DOI: 10.1016/j.animal.2023.100706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Tibetan goats, Taihang goats, Jining grey goats, and Meigu goats are the representative indigenous goats in China, found in Qinghai-Tibet Plateau, Western pastoral area, Northern and Southern agricultural regions. Very few studies have conducted a comprehensive analysis of the genomic diversity and selection of these breeds. We genotyped 96 unrelated individuals, using goat 53 K Illumina BeadChip array, of the following goat breeds: Tibetan (TG), Taihang (THG), Jining grey (JGG), and Meigu (MGG). A total of 45 951 single nucleotide polymorphisms were filtered to estimate the genetic diversity and selection signatures. All breeds had a high proportion (over 95%) of polymorphic loci. The observed and excepted heterozygosity ranged from 0.338 (MGG) to 0.402 (JGG) and 0.339 (MGG) to 0.395 (JGG), respectively. Clustering analysis displayed a genetically distinct lineage for each breed, and their Fst were greater than 0.25, indicating that they had a higher genetic differentiation between groups. Furthermore, effective population size reduced in all four populations, indicating a loss of genetic diversity. In addition, runs of homozygosity were mainly distributed in 5-10 Mb. Lastly, we identified signature genes, which were closely related to high-altitude adaptation (ADIRF) and prolificity (CNTROB, SMC3, and PTEN). This study provides a valuable resource for future studies on genome-wide perspectives on the diversity and selection signatures of Chinese indigenous goats.
Collapse
Affiliation(s)
- Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinlu Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunhua Huang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Liu Yang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiaoyong Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Aline Freitas-de-Melo
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
7
|
Analysis of Family Structure and Paternity Test of Tan Sheep in Yanchi Area, China. Animals (Basel) 2022; 12:ani12223099. [PMID: 36428327 PMCID: PMC9686711 DOI: 10.3390/ani12223099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Tan sheep is a special breed of locally protected sheep in China, one of the best quality meat sheep in the world. Due to the unclear pedigree of the rams on the Ningxia Tan sheep breeding farm, we investigated 74 rams in the field and explored a new method for family division. Genomic DNA was extracted from the blood of breeding rams. Using Plink software, GCTA tools and R language, we analyzed the genetic structure, kinship, and inbreeding coefficient of the breeding sheep, which revealed the genetic relationship between the individuals. The results showed that there was no obvious clustering phenomenon in the PCA, and the genetic background of the samples was similar. The G matrix and IBS distance matrix indicated that most individuals were far away from each other. Paternity testing identified 24 pairs of unknown parent-child pairs, and all the Tan sheep could be divided into 12 families, which provided a reference for sheep breeding. The average inbreeding coefficient based on the ROH of this population was 0.049, so there was a low degree of inbreeding and the rams in the field were able to maintain high genetic diversity. Overall, we explored a more accurate method through paternity and kinship analysis; it provides a scientific basis for pedigree construction, which has an important application value for Tan sheep breeding.
Collapse
|
8
|
Wang X, Li G, Jiang Y, Tang J, Fan Y, Ren J. Genomic insights into the conservation and population genetics of two Chinese native goat breeds. J Anim Sci 2022; 100:skac274. [PMID: 35998083 PMCID: PMC9585554 DOI: 10.1093/jas/skac274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 08/20/2022] [Indexed: 11/14/2022] Open
Abstract
Chinese goats are an important group of goats worldwide. However, there are few studies on the conservation priority, genetic relationship, and potential gene flow between Chinese and global goat breeds. Here, we genotyped 239 goats from conservation populations of the Chinese Guangfeng and Ganxi breeds using the GoatSNP50 BeadChip. The conservation priority, population structure, selection signatures and introgression of these goats were analyzed in the context of 36 global goat breeds. First, we showed that Guangfeng and Ganxi goats had the largest effective population sizes across the global breeds 13 generations ago. Nevertheless, Ganxi goats have recently experienced a high degree of inbreeding, resulting in their conservation priority based on total gene and allelic diversities being lower than that of most other Chinese breeds (including Guangfeng goats). Population structure and admixture analyses showed that an average of 18% of Guangfeng genomic components were introgressed from Boer goats approximately 18-yr ago. Next, we reconstructed the subfamily structure of the core populations of Guangfeng and Ganxi goats, and proposed reasonable conservation strategies for inbreeding management. Moreover, a list of candidate genes under selection for fertility, immunity, growth, and meat quality were detected in Guangfeng and Ganxi goats. Finally, we identified some genes related to body development and reproduction, which were introgressed from Boer goats and may be beneficial for improving performance and productivity of Guangfeng goats. In conclusion, this study not only provides new insights into the conservation and utilization of Guangfeng and Ganxi goats but also enriches our understanding of artificial introgression from exotic goats into Chinese local goats.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guixin Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongchuang Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianhong Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou 341000, China
| | - Yin Fan
- Department of Animal Science, Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Jun Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|