1
|
Mohd Shaha FR, Liew PL, Qamaruz Zaman F, Nulit R, Barin J, Rolland J, Yong HY, Boon SH. Genotyping by sequencing for the construction of oil palm ( Elaeis guineensis Jacq.) genetic linkage map and mapping of yield related quantitative trait loci. PeerJ 2024; 12:e16570. [PMID: 38313025 PMCID: PMC10836210 DOI: 10.7717/peerj.16570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/13/2023] [Indexed: 02/06/2024] Open
Abstract
Background Oil palm (Elaeis guineensis Jacq.) is one of the major oil-producing crops. Improving the quality and increasing the production yield of oil palm have been the primary focuses of both conventional and modern breeding approaches. However, the conventional breeding approach for oil palm is very challenging due to its longevity, which results in a long breeding cycle. Thus, the establishment of marker assisted selection (MAS) for oil palm breeding programs would speed up the breeding pipeline by generating new oil palm varieties that possess high commercial traits. With the decreasing cost of sequencing, Genotyping-by-sequencing (GBS) is currently feasible to many researchers and it provides a platform to accelerate the discovery of single nucleotide polymorphism (SNP) as well as insertion and deletion (InDel) markers for the construction of a genetic linkage map. A genetic linkage map facilitates the identification of significant DNA regions associated with the trait of interest via quantitative trait loci (QTL) analysis. Methods A mapping population of 112 F1 individuals from a cross of Deli dura and Serdang pisifera was used in this study. GBS libraries were constructed using the double digestion method with HindIII and TaqI enzymes. Reduced representation libraries (RRL) of 112 F1 progeny and their parents were sequenced and the reads were mapped against the E. guineensis reference genome. To construct the oil palm genetic linkage map, informative SNP and InDel markers were used to discover significant DNA regions associated with the traits of interest. The nine traits of interest in this study were fresh fruit bunch (FFB) yield, oil yield (OY), oil to bunch ratio (O/B), oil to dry mesocarp ratio (O/DM) ratio, oil to wet mesocarp ratio (O/WM), mesocarp to fruit ratio (M/F), kernel to fruit ratio (K/F), shell to fruit ratio (S/F), and fruit to bunch ratio (F/B). Results A total of 2.5 million SNP and 153,547 InDel markers were identified. However, only a subset of 5,278 markers comprising of 4,838 SNPs and 440 InDels were informative for the construction of a genetic linkage map. Sixteen linkage groups were produced, spanning 2,737.6 cM for the maternal map and 4,571.6 cM for the paternal map, with average marker densities of one marker per 2.9 cM and one per 2.0 cM respectively, were produced. A QTL analysis was performed on nine traits; however, only QTL regions linked to M/F, K/F and S/F were declared to be significant. Of those QTLs were detected: two for M/F, four for K/F and one for S/F. These QTLs explained 18.1-25.6% of the phenotypic variance and were located near putative genes, such as casein kinase II and the zinc finger CCCH domain, which are involved in seed germination and growth. The identified QTL regions for M/F, K/F and S/F from this study could be applied in an oil palm breeding program and used to screen palms with desired traits via marker assisted selection (MAS).
Collapse
Affiliation(s)
- Fakhrur Razi Mohd Shaha
- ACGT Sdn. Bhd. & Laboratories, Bukit Jalil, Kuala Lumpur, Malaysia
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Pui Ling Liew
- ACGT Sdn. Bhd. & Laboratories, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Faridah Qamaruz Zaman
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rosimah Nulit
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Jakim Barin
- Wisma Pertanian Sabah, Department of Agriculture Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Justina Rolland
- Wisma Pertanian Sabah, Department of Agriculture Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Hui Yee Yong
- ACGT Sdn. Bhd. & Laboratories, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Soo Heong Boon
- ACGT Sdn. Bhd. & Laboratories, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Ting NC, Chan PL, Buntjer J, Ordway JM, Wischmeyer C, Ooi LCL, Low ETL, Marjuni M, Sambanthamurthi R, Singh R. High-resolution genetic linkage map and height-related QTLs in an oil palm ( Elaeis guineensis) family planted across multiple sites. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1301-1318. [PMID: 38024957 PMCID: PMC10678900 DOI: 10.1007/s12298-023-01360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Abstract
A refined SNP array containing 92,459 probes was developed and applied for chromosome scanning, construction of a high-density genetic linkage map and QTL analysis in a selfed Nigerian oil palm family (T128). Genotyping of the T128 mapping family generated 76,447 good quality SNPs for detailed scanning of aberration and homozygosity in the individual pseudo-chromosomes. Of them, 25,364 polymorphic SNPs were used for linkage analysis resulting in an 84.4% mapping rate. A total of 21,413 SNPs were mapped into 16 linkage groups (LGs), covering a total map length of 1364.5 cM. This genetic map is 16X denser than the previous version used to establish pseudo-chromosomes of the oil palm reference genome published in 2013. The QTLs associated with height, height increment and rachis length were identified in LGs TT05, 06, 08, 15 and 16. The present QTLs as well as those published previously were tagged to the reference genome to determine their chromosomal locations. Almost all the QTLs identified in this study were either close to or co-located with those reported in other populations. Determining the QTL position on chromosomes was also helpful in mining for the underlying candidate genes. In total, 55 putative genes and transcription factors involved in the biosynthesis, conjugation and signalling of the major phytohormones, especially for gibberellins and cell wall morphogenesis were found to be present in the identified genomic QTL regions, and their potential roles in plant dwarfism are discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01360-2.
Collapse
Affiliation(s)
- Ngoot-Chin Ting
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Pek-Lan Chan
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | | | | | | | - Leslie Cheng-Li Ooi
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Eng Ti Leslie Low
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Marhalil Marjuni
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Ravigadevi Sambanthamurthi
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Rajinder Singh
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|
3
|
Seyum EG, Bille NH, Abtew WG, Rastas P, Arifianto D, Domonhédo H, Cochard B, Jacob F, Riou V, Pomiès V, Lopez D, Bell JM, Cros D. Genome properties of key oil palm (Elaeis guineensis Jacq.) breeding populations. J Appl Genet 2022; 63:633-650. [PMID: 35691996 DOI: 10.1007/s13353-022-00708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022]
Abstract
A good knowledge of the genome properties of the populations makes it possible to optimize breeding methods, in particular genomic selection (GS). In oil palm (Elaeis guineensis Jacq), the world's main source of vegetable oil, this would provide insight into the promising GS results obtained so far. The present study considered two complex breeding populations, Deli and La Mé, with 943 individuals and 7324 single-nucleotide polymorphisms (SNPs) from genotyping-by-sequencing. Linkage disequilibrium (LD), haplotype sharing, effective size (Ne), and fixation index (Fst) were investigated. A genetic linkage map spanning 1778.52 cM and with a recombination rate of 2.85 cM/Mbp was constructed. The LD at r2=0.3, considered the minimum to get reliable GS results, spanned over 1.05 cM/0.22 Mbp in Deli and 0.9 cM/0.21 Mbp in La Mé. The significant degree of differentiation existing between Deli and La Mé was confirmed by the high Fst value (0.53), the pattern of correlation of SNP heterozygosity and allele frequency among populations, and the decrease of persistence of LD and of haplotype sharing among populations with increasing SNP distance. However, the level of resemblance between the two populations over short genomic distances (correlation of r values between populations >0.6 for SNPs separated by <0.5 cM/1 kbp and percentage of common haplotypes >40% for haplotypes <3600 bp/0.20 cM) likely explains the superiority of GS models ignoring the parental origin of marker alleles over models taking this information into account. The two populations had low Ne (<5). Population-specific genetic maps and reference genomes are recommended for future studies.
Collapse
Affiliation(s)
- Essubalew Getachew Seyum
- Department of Plant Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- CETIC (African Center of Excellence in Information and Communication Technologies), University of Yaoundé I, Yaoundé, Cameroon
- Department of Horticulture and Plant Sciences, Jimma University College of Agriculture and Veterinary Medicine, P.O. Box 307, Jimma, Ethiopia
| | - Ngalle Hermine Bille
- Department of Plant Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Wosene Gebreselassie Abtew
- Department of Horticulture and Plant Sciences, Jimma University College of Agriculture and Veterinary Medicine, P.O. Box 307, Jimma, Ethiopia
| | - Pasi Rastas
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014, Helsinki, Finland
| | | | | | | | | | - Virginie Riou
- CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP Institut, F-34398, Montpellier, France
- UMR AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
| | - Virginie Pomiès
- CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP Institut, F-34398, Montpellier, France
- UMR AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
| | - David Lopez
- CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP Institut, F-34398, Montpellier, France
- UMR AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France
| | - Joseph Martin Bell
- Department of Plant Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - David Cros
- CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP Institut, F-34398, Montpellier, France.
- UMR AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France.
| |
Collapse
|
4
|
Somyong S, Phetchawang P, Bihi AK, Sonthirod C, Kongkachana W, Sangsrakru D, Jomchai N, Pootakham W, Tangphatsornruang S. A SNP variation in an expansin ( EgExp4) gene affects height in oil palm. PeerJ 2022; 10:e13046. [PMID: 35313525 PMCID: PMC8934041 DOI: 10.7717/peerj.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/10/2022] [Indexed: 01/11/2023] Open
Abstract
Oil palm (Elaeis guineensis Jacq.), an Aracaceae family plant, is utilized for both consumable and non-consumable products, including cooking oil, cosmetics and biodiesel production. Oil palm is a perennial tree with 25 years of optimal harvesting time and a height of up to 18 m. However, harvesting of oil palm fruit bunches with heights of more than 2-3 meters is challenging for oil palm farmers. Thus, understanding the genetic control of height would be beneficial for using gene-based markers to speed up oil palm breeding programs to select semi-dwarf oil palm varieties. This study aims to identify Insertion/Deletions (InDels) and single nucleotide polymorphisms (SNPs) of five height-related genes, including EgDELLA1, EgGRF1, EgGA20ox1, EgAPG1 and EgExp4, in short and tall oil palm groups by PacBio SMRT sequencing technology. Then, the SNP variation's association with height was validated in the Golden Tenera (GT) population. All targeted genes were successfully amplified by two rounds of PCR amplification with expected sizes that ranged from 2,516 to 3,015 base pair (bp), covering 5' UTR, gene sequences and 3' UTR from 20 short and 20 tall oil palm trees. As a result, 1,166, 909, 1,494, 387 and 5,384 full-length genomic DNA sequences were revealed by PacBio SMRT sequencing technology, from EgDELLA1, EgGRF1, EgGA20ox1, EgAPG1 and EgExp4 genes, respectively. Twelve variations, including eight InDels and four SNPs, were identified from EgDELLA1, EgGRF1, EgGA20ox1 and EgExp4. No variation was found for EgAPG1. After SNP through-put genotyping of 4 targeted SNP markers was done by PACE™ SNP genotyping, the association with height was determined in the GT population. Only the mEgExp4_SNP118 marker, designed from EgExp4 gene, was found to associate with height in 2 of 4 height-recordings, with p values of 0.0383 for height (HT)-1 and 0.0263 for HT-4. In conclusion, this marker is a potential gene-based marker that may be used in oil palm breeding programs for selecting semi-dwarf oil palm varieties in the near future.
Collapse
Affiliation(s)
- Suthasinee Somyong
- National Omics Center, National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| | - Phakamas Phetchawang
- National Omics Center, National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| | - Abdulloh Kafa Bihi
- National Omics Center, National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand,School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Chutima Sonthirod
- National Omics Center, National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| | - Wasitthee Kongkachana
- National Omics Center, National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| | - Duangjai Sangsrakru
- National Omics Center, National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| | - Nukoon Jomchai
- National Omics Center, National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| | - Wirulda Pootakham
- National Omics Center, National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center, National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani, Thailand
| |
Collapse
|
5
|
Murphy DJ, Goggin K, Paterson RRM. Oil palm in the 2020s and beyond: challenges and solutions. CABI AGRICULTURE AND BIOSCIENCE 2021; 2:39. [PMID: 34661165 PMCID: PMC8504560 DOI: 10.1186/s43170-021-00058-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Oil palm, Elaeis guineensis, is by far the most important global oil crop, supplying about 40% of all traded vegetable oil. Palm oils are key dietary components consumed daily by over three billion people, mostly in Asia, and also have a wide range of important non-food uses including in cleansing and sanitizing products. MAIN BODY Oil palm is a perennial crop with a > 25-year life cycle and an exceptionally low land footprint compared to annual oilseed crops. Oil palm crops globally produce an annual 81 million tonnes (Mt) of oil from about 19 million hectares (Mha). In contrast, the second and third largest vegetable oil crops, soybean and rapeseed, yield a combined 84 Mt oil but occupy over 163 Mha of increasingly scarce arable land. The oil palm crop system faces many challenges in the 2020s. These include increasing incidence of new and existing pests/diseases and a general lack of climatic resilience, especially relating to elevated temperatures and increasingly erratic rainfall patterns, plus downstream issues relating to supply chains and consumer sentiment. This review surveys the oil palm sector in the 2020s and beyond, its major challenges and options for future progress. CONCLUSIONS Oil palm crop production faces many future challenges, including emerging threats from climate change and pests and diseases. The inevitability of climate change requires more effective international collaboration for its reduction. New breeding and management approaches are providing the promise of improvements, such as much higher yielding varieties, improved oil profiles, enhanced disease resistance, and greater climatic resilience.
Collapse
Affiliation(s)
- Denis J. Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 4AT UK
| | - Kirstie Goggin
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 4AT UK
- School of Pharmacy and Pharmaceutical Sciences, University of Cardiff, CF10 3NB Cardiff, UK
| | - R. Russell M. Paterson
- CEB-Centre of Biological Engineering, Gualtar Campus, University of Minho, 4710-057 Braga, Portugal
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. Malaysia
| |
Collapse
|
6
|
Yue GH, Ye BQ, Lee M. Molecular approaches for improving oil palm for oil. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:22. [PMID: 37309424 PMCID: PMC10236033 DOI: 10.1007/s11032-021-01218-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/22/2021] [Indexed: 06/14/2023]
Abstract
The oil palm, originating from Africa, is the most productive oil crop species. Palm oil is an important source of edible oil. Its current global plantation area is over 23 million ha. The theoretical oil yield potential of the oil palm is 18.2 tons/ha/year. However, current average oil yield is only 3.8 tons/ha/year. In the past 100 years, conventional breeding and improvement of field management played important roles in increasing oil yield. However, conventional breeding for trait improvement was limited by its very long (10-20 years) phenotypic selection cycle, although it improved oil yield by ~10-20% per generation. Molecular breeding using novel molecular technologies will accelerate genetic improvement and may reduce the need to deforest and to use arable land for expanding oil palm plantations, which in turn makes palm oil more sustainable. Here, we comprehensively synthesize information from relevant literature of the technologies, achievements, and challenges of molecular approaches, including tissue culture, haploid breeding, mutation breeding, marker-assisted selection (MAS), genomic selection (GS), and genome editing (GE). We propose the characteristics of ideal palms and suggest a road map to breed ideal palms for sustainable palm oil.
Collapse
Affiliation(s)
- Gen Hua Yue
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore
- School of Biological Sciences, Nanyang Technological University, 6 Nanyang Drive, Singapore, 637551 Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543 Singapore
| | - Bao Qing Ye
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore
| | - May Lee
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore
| |
Collapse
|