1
|
Alshegaihi RM. The complete chloroplast genome of the halophyte flowering plant Suaeda monoica from Jeddah, Saudi Arabia. Mol Biol Rep 2024; 51:60. [PMID: 38165474 DOI: 10.1007/s11033-023-09069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/11/2023] [Indexed: 01/03/2024]
Abstract
The complete chloroplast genome (plastome) of the annual flowering halophyte herb Suaeda monoica Forssk. ex J. F. Gmel. family (Amaranthaceae) that grows in Jeddah, Saudi Arabia, was identified for the first time in this study. Suaeda monoica is a medicinal plant species whose taxonomic classification remains controversial. Further, studying the species is useful for current conservation and management efforts. In the current study, the full chloroplast genome S. monoica was reassembled using whole-genome next-generation sequencing and compared with the previously published chloroplast genomes of Suaeda species. The chloroplast genome size of Suaeda monoica was 151,789 bp, with a single large copy of 83,404 bp, a small single copy of 18,007 bp and two inverted repeats regions of 25,189 bp. GC content in the whole genome was 36.4%. The cp genome included 87 genes that coded for proteins, 37 genes coding for tRNA, 8 genes coding for rRNA and one non-coding pseudogene. Five chloroplast genome features were compared between S. monoica and S. japonica, S. glauca, S. salsa, S. malacosperma and S. physophora. Among Suaeda genus and equal to most angiosperms chloroplast genomes, the RSCU values were conservative. Two pseudogenes (accD and ycf1), rpl16 intron and ndhF-rpl32 intergenic spacer, were highlighted as suitable DNA barcodes for different Suaeda species. Phylogenetic analyses show Suaeda cluster into three main groups; one in which S. monoica was closer to S. salsa. The obtained result provided valuable information on the characteristics of the S. monoica chloroplast genome and the phylogenetic relationships.
Collapse
Affiliation(s)
- Rana M Alshegaihi
- Department of Biological Sciences, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Ni Y, Li J, Lu Q, Chen H. Characterizing the chloroplast genome of Mammillaria elongata DC. 1828 in the Cactaceae family and unveiling its phylogenetic affinities within the genus Mammillaria. Mitochondrial DNA B Resour 2023; 8:1071-1076. [PMID: 37842007 PMCID: PMC10569349 DOI: 10.1080/23802359.2023.2265100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
With its nearly 200 species, the Mammillaria genus is the most species-rich within the Cactaceae family, yet surprisingly, few of its chloroplast genomes have been studied. We focused on the species Mammillaria elongata DC. 1828, a petite cactus native to Mexico and favored by horticulturists, yet whose phylogenetic relationships remain uncertain due to a lack of genomic data. We extracted the DNA from a sample obtained in China, sequenced it using the NovaSeq 6000 platform, and assembled the chloroplast genome using GetOrganelle software. Our assembly resulted in a chloroplast genome of 110,981 base pairs with an overall GC content of 36.28%, which included 100 genes (95 unique). Notably, several protein-coding genes were absent. Phylogenetic analysis using 59 shared genes across nine Mammillaria species and one Obregonia species revealed that M. elongata and M. gracilis are closely related, suggesting a recent common ancestor and possible shared evolutionary pressures or ecological niches. This study provides crucial genomic data for M. elongata and hints at intriguing phylogenetic relationships within the Mammillaria genus.
Collapse
Affiliation(s)
- Yang Ni
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Jingling Li
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, PR China
| | - Qianqi Lu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Haimei Chen
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| |
Collapse
|
3
|
Cruz Plancarte D, Solórzano S. Structural and gene composition variation of the complete mitochondrial genome of Mammillaria huitzilopochtli (Cactaceae, Caryophyllales), revealed by de novo assembly. BMC Genomics 2023; 24:509. [PMID: 37653379 PMCID: PMC10468871 DOI: 10.1186/s12864-023-09607-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/20/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Structural descriptions of complete genomes have elucidated evolutionary processes in angiosperms. In Cactaceae (Caryophyllales), a high structural diversity of the chloroplast genome has been identified within and among genera. In this study, we assembled the first mitochondrial genome (mtDNA) for the short-globose cactus Mammillaria huitzilopochtli. For comparative purposes, we used the published genomes of 19 different angiosperms and the gymnosperm Cycas taitungensis as an external group for phylogenetic issues. RESULTS The mtDNA of M. huitzilopochtli was assembled into one linear chromosome of 2,052,004 bp, in which 65 genes were annotated. These genes account for 57,606 bp including 34 protein-coding genes (PCGs), 27 tRNAs, and three rRNAs. In the non-coding sequences, repeats were abundant, with a total of 4,550 (179,215 bp). In addition, five complete genes (psaC and four tRNAs) of chloroplast origin were documented. Negative selection was estimated for most (23) of the PCGs. The phylogenetic tree showed a topology consistent with previous analyses based on the chloroplast genome. CONCLUSIONS The number and type of genes contained in the mtDNA of M. huitzilopochtli were similar to those reported in 19 other angiosperm species, regardless of their phylogenetic relationships. Although other Caryophyllids exhibit strong differences in structural arrangement and total size of mtDNA, these differences do not result in an increase in the typical number and types of genes found in M. huitzilopochtli. We concluded that the total size of mtDNA in angiosperms increases by the lengthening of the non-coding sequences rather than a significant gain of coding genes.
Collapse
Affiliation(s)
- David Cruz Plancarte
- Laboratorio de Ecología Molecular y Evolución, Universidad Nacional Autónoma de México, FES Iztacala, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla de Baz, 54090, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Sofía Solórzano
- Laboratorio de Ecología Molecular y Evolución, Universidad Nacional Autónoma de México, FES Iztacala, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla de Baz, 54090, Mexico.
| |
Collapse
|
4
|
Wei R, Li Q. The Complete Chloroplast Genome of Endangered Species Stemona parviflora: Insight into the Phylogenetic Relationship and Conservation Implications. Genes (Basel) 2022; 13:genes13081361. [PMID: 36011272 PMCID: PMC9407434 DOI: 10.3390/genes13081361] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Stemona parviflora is an endangered species, narrowly endemic to Hainan and Southwest Guangdong. The taxonomic classification of S. parviflora remains controversial. Moreover, studying endangered species is helpful for current management and conservation. In this study, the first complete chloroplast genome of S. parviflora was assembled and compared with other Stemona species. The chloroplast genome size of S. parviflora was 154,552 bp, consisting of 87 protein-coding genes, 38 tRNA genes, 8 rRNA genes, and one pseudogene. The ψycf1 gene was lost in the cp genome of S. sessilifolia, but it was detected in four other species of Stemona. The inverted repeats (IR) regions have a relatively lower length variation compared with the large single copy (LSC) and small single copy (SSC) regions. Long repeat sequences and simple sequence repeat (SSR) were detected, and most SSR were distributed in the LSC region. Codon usage bias analyses revealed that the RSCU value of the genus Stemona has almost no difference. As with most angiosperm chloroplast genomes, protein-coding regions were more conservative than the inter-gene spacer. Seven genes (atpI, ccsA, cemA, matK, ndhA, petA, and rpoC1) were detected under positive selection in different Stemona species, which may result from adaptive evolution to different habitats. Phylogenetic analyses show the Stemona cluster in two main groups; S. parviflora were closest to S. tuberosa. A highly suitable region of S. parviflora was simulated by Maxent in this study; it is worth noting that the whole territory of Taiwan has changed to a low fitness area and below in the 2050 s, which may not be suitable for the introduction and cultivation of S. parviflora. In addition, limited by the dispersal capacity of S. parviflora, it is necessary to carry out artificial grafts to expand the survival areas of S. parviflora. Our results provide valuable information on characteristics of the chloroplast genome, phylogenetic relationships, and potential distribution range of the endangered species S. parviflora.
Collapse
Affiliation(s)
- Ran Wei
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Qiang Li
- Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Correspondence:
| |
Collapse
|
5
|
Liu H, Liu W, Ahmad I, Xiao Q, Li X, Zhang D, Fang J, Zhang G, Xu B, Gao Q, Chen S. Complete Chloroplast Genome Sequence of Triosteum sinuatum, Insights into Comparative Chloroplast Genomics, Divergence Time Estimation and Phylogenetic Relationships among Dipsacales. Genes (Basel) 2022; 13:genes13050933. [PMID: 35627318 PMCID: PMC9141360 DOI: 10.3390/genes13050933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Triosteum himalayanum, Triosteum pinnatifidum (Triosteum L., Caprifoliaceae, Dipsacales) are widely distributed in China while Triosteum sinuatum mainly occurrs in northeast China. Few reports have been determined on the genus Triosteum. In the present research, we sequenced 2 chloroplast genomes of Triosteum and analyzed 18 chloroplast genomes, trying to explore the sequence variations and phylogeny of genus Triosteum in the order Dipsacales. The chloroplast genomes of the genus Triosteum ranged from 154,579 bp to 157,178 bp, consisting of 132 genes (86 protein-coding genes, 38 transfer RNA genes, and 8 ribosomal RNA genes). Comparative analyses and phylogenetic analysis supported the division of Dipsacales into two clades, Adoxaceae and six other families. Among the six families, a clade of Valerianaceae+Dipsacaceae was recovered as a sister to a clade of Morinaceae+Linnaeaceae. A closer relationship of T. himalayanum and T. pinnatifidum among three species was revealed. Our research supported that Loniceraferdinandi and Triosteum was closely related. Zabelia had a closer relationship with Linnaea borealis and Dipelta than Morinaceae. The divergence between T. sinuatum and two other species in Triosteum was dated to 13.4 mya.
Collapse
Affiliation(s)
- HaiRui Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810008, China; (H.L.); (D.Z.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China; (Q.X.); (X.L.); (J.F.); (G.Z.); (B.X.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China;
| | - WenHui Liu
- Department of Geological Engineering, Qinghai University, Xining 810016, China;
| | - Israr Ahmad
- Department of Botany, Women University of AJK, Bagh 12500, Pakistan;
| | - QingMeng Xiao
- College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China; (Q.X.); (X.L.); (J.F.); (G.Z.); (B.X.)
| | - XuMin Li
- College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China; (Q.X.); (X.L.); (J.F.); (G.Z.); (B.X.)
| | - DeJun Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810008, China; (H.L.); (D.Z.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China; (Q.X.); (X.L.); (J.F.); (G.Z.); (B.X.)
| | - Jie Fang
- College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China; (Q.X.); (X.L.); (J.F.); (G.Z.); (B.X.)
| | - GuoFan Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China; (Q.X.); (X.L.); (J.F.); (G.Z.); (B.X.)
| | - Bin Xu
- College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China; (Q.X.); (X.L.); (J.F.); (G.Z.); (B.X.)
| | - QingBo Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China;
- Correspondence:
| | - ShiLong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China;
| |
Collapse
|
6
|
González-Sánchez JDJ, Santiago-Sandoval I, Lara-González JA, Colchado-López J, Cervantes CR, Vélez P, Reyes-Santiago J, Arias S, Rosas U. Growth Patterns in Seedling Roots of the Pincushion Cactus Mammillaria Reveal Trends of Intra- and Inter-Specific Variation. FRONTIERS IN PLANT SCIENCE 2021; 12:750623. [PMID: 34691127 PMCID: PMC8531529 DOI: 10.3389/fpls.2021.750623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 05/25/2023]
Abstract
Genetic mechanisms controlling root development are well-understood in plant model species, and emerging frontier research is currently dissecting how some of these mechanisms control root development in cacti. Here we show the patterns of root architecture development in a gradient of divergent lineages, from populations to species in Mammillaria. First, we show the patterns of variation in natural variants of the species Mammillaria haageana. Then we compare this variation to closely related species within the Series Supertexta in Mammillaria (diverging for the last 2.1 million years) in which M. haageana is inserted. Finally, we compared these patterns of variation to what is found in a set of Mammillaria species belonging to different Series (diverging for the last 8 million years). When plants were grown in controlled environments, we found that the variation in root architecture observed at the intra-specific level, partially recapitulates the variation observed at the inter-specific level. These phenotypic outcomes at different evolutionary time-scales can be interpreted as macroevolution being the cumulative outcome of microevolutionary phenotypic divergence, such as the one observed in Mammillaria accessions and species.
Collapse
Affiliation(s)
- José de Jesús González-Sánchez
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Itzel Santiago-Sandoval
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Joel Colchado-López
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cristian R. Cervantes
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Vélez
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jerónimo Reyes-Santiago
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Salvador Arias
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ulises Rosas
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
7
|
Gutiérrez AV, Filippi CV, Aguirre NC, Puebla AF, Acuña CV, Taboada GM, Ortega-Baes FP. Development of novel SSR molecular markers using a Next-Generation Sequencing approach (ddRADseq) in Stetsonia coryne (Cactaceae). AN ACAD BRAS CIENC 2021; 93:e20201778. [PMID: 34468492 DOI: 10.1590/0001-3765202120201778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
The Cactaceae family is native to the American continent with several centers of diversity. In South America, one of these centers is the Central Andes and many species are considered to be threatened or vulnerable according to the International Union for Conservation of Nature (IUCN). Stetsonia coryne is an emblematic giant columnar cacti of the Chaco phytogeographic province. It has an extensive geographical distribution in many countries of the continent. However, to date there are no specific molecular markers for this species, neither reports of population genetic variability studies, such as for many cactus species. The lack of information is fundamentally due to the lack of molecular markers that allow these studies. In this work, by applying a Genotyping by Sequencing (GBS) technique, we developed polymorphic SSR markers for the Stetsonia coryne and evaluated their transferability to phylogenetically close species, in order to account for a robust panel of molecular markers for multispecies-studies within Cactaceae.
Collapse
Affiliation(s)
- Angela Verónica Gutiérrez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425 Ciudad Autónoma de Buenos Aires, Argentina.,Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Avenida Bolivia 5150, 4400 Salta-Salta, Argentina.,Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), formerly Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y de los Reseros s/n, B1686IGC, Hurlingham, Buenos Aires, Argentina
| | - Carla Valeria Filippi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425 Ciudad Autónoma de Buenos Aires, Argentina.,Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), formerly Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y de los Reseros s/n, B1686IGC, Hurlingham, Buenos Aires, Argentina
| | - Natalia Cristina Aguirre
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425 Ciudad Autónoma de Buenos Aires, Argentina.,Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), formerly Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y de los Reseros s/n, B1686IGC, Hurlingham, Buenos Aires, Argentina
| | - Andrea Fabiana Puebla
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), formerly Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y de los Reseros s/n, B1686IGC, Hurlingham, Buenos Aires, Argentina
| | - Cintia Vanesa Acuña
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), formerly Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y de los Reseros s/n, B1686IGC, Hurlingham, Buenos Aires, Argentina
| | - Gisel María Taboada
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425 Ciudad Autónoma de Buenos Aires, Argentina.,Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Avenida Bolivia 5150, 4400 Salta-Salta, Argentina
| | - Francisco Pablo Ortega-Baes
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425 Ciudad Autónoma de Buenos Aires, Argentina.,Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Avenida Bolivia 5150, 4400 Salta-Salta, Argentina
| |
Collapse
|