1
|
Vega JM, Podio M, Orjuela J, Siena LA, Pessino SC, Combes MC, Mariac C, Albertini E, Pupilli F, Ortiz JPA, Leblanc O. Chromosome-scale genome assembly and annotation of Paspalum notatum Flüggé var. saurae. Sci Data 2024; 11:891. [PMID: 39152143 PMCID: PMC11329641 DOI: 10.1038/s41597-024-03731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Paspalum notatum Flüggé is an economically important subtropical fodder grass that is widely used in the Americas. Here, we report a new chromosome-scale genome assembly and annotation of a diploid biotype collected in the center of origin of the species. Using Oxford Nanopore long reads, we generated a 557.81 Mb genome assembly (N50 = 56.1 Mb) with high gene completeness (BUSCO = 98.73%). Genome annotation identified 320 Mb (57.86%) of repetitive elements and 45,074 gene models, of which 36,079 have a high level of confidence. Further characterisation included the identification of 59 miRNA precursors together with their putative targets. The present work provides a comprehensive genomic resource for P. notatum improvement and a reference frame for functional and evolutionary research within the genus.
Collapse
Grants
- PUE 22920160100043CO Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PIP 11220200101680CO Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- PICT 2019 3414 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT 2019-02153 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PICT-2017-1956 Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Science and Technology, Argentina)
- PIP 80020190300021UR Universidad Nacional de Rosario (National University of Rosario)
- 101007438 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
- 872417 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
- PRIN 2022Z4HLLJ Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- P2022KFJB5 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
Collapse
Affiliation(s)
- Juan Manuel Vega
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla (S2125ZAA), Santa Fe, Argentina
| | - Maricel Podio
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla (S2125ZAA), Santa Fe, Argentina
| | - Julie Orjuela
- DIADE, Univ. Montpellier, CIRAD, IRD, Montpellier, France
| | - Lorena A Siena
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla (S2125ZAA), Santa Fe, Argentina
| | - Silvina C Pessino
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla (S2125ZAA), Santa Fe, Argentina
| | | | - Cedric Mariac
- DIADE, Univ. Montpellier, CIRAD, IRD, Montpellier, France
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06121, Perugia, Italy
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Juan Pablo A Ortiz
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla (S2125ZAA), Santa Fe, Argentina.
| | | |
Collapse
|
2
|
Masters LE, Tomaszewska P, Schwarzacher T, Hackel J, Zuntini AR, Heslop-Harrison P, Vorontsova MS. Phylogenomic analysis reveals five independently evolved African forage grass clades in the genus Urochloa. ANNALS OF BOTANY 2024; 133:725-742. [PMID: 38365451 PMCID: PMC11082517 DOI: 10.1093/aob/mcae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND AIMS The grass genus Urochloa (Brachiaria) sensu lato includes forage crops that are important for beef and dairy industries in tropical and sub-tropical Africa, South America and Oceania/Australia. Economically important species include U. brizantha, U. decumbens, U. humidicola, U. mutica, U. arrecta, U. trichopus, U. mosambicensis and Megathyrsus maximus, all native to the African continent. Perennial growth habits, large, fast growing palatable leaves, intra- and interspecific morphological variability, apomictic reproductive systems and frequent polyploidy are widely shared within the genus. The combination of these traits probably favoured the selection for forage domestication and weediness, but trait emergence across Urochloa cannot be modelled, as a robust phylogenetic assessment of the genus has not been conducted. We aim to produce a phylogeny for Urochloa that includes all important forage species, and identify their closest wild relatives (crop wild relatives). Finally, we will use our phylogeny and available trait data to infer the ancestral states of important forage traits across Urochloa s.l. and model the evolution of forage syndromes across the genus. METHODS Using a target enrichment sequencing approach (Angiosperm 353), we inferred a species-level phylogeny for Urochloa s.l., encompassing 54 species (~40 % of the genus) and outgroups. Phylogenies were inferred using a multispecies coalescent model and maximum likelihood method. We determined the phylogenetic placement of agriculturally important species and identified their closest wild relatives, or crop wild relatives, based on well-supported monophyly. Further, we mapped key traits associated with Urochloa forage crops to the species tree and estimated ancestral states for forage traits along branch lengths for continuous traits and at ancestral nodes in discrete traits. KEY RESULTS Agricultural species belong to five independent clades, including U. brizantha and U. decumbens lying in a previously defined species complex. Crop wild relatives were identified for these clades supporting previous sub-generic groupings in Urochloa based on morphology. Using ancestral trait estimation models, we find that five morphological traits that correlate with forage potential (perennial growth habits, culm height, leaf size, a winged rachis and large seeds) independently evolved in forage clades. CONCLUSIONS Urochloa s.l. is a highly diverse genus that contains numerous species with agricultural potential, including crop wild relatives that are currently underexploited. All forage species and their crop wild relatives naturally occur on the African continent and their conservation across their native distributions is essential. Genomic and phenotypic diversity in forage clade species and their wild relatives need to be better assessed both to develop conservation strategies and to exploit the diversity in the genus for improved sustainability in Urochloa cultivar production.
Collapse
Affiliation(s)
- Lizo E Masters
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Paulina Tomaszewska
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Department of Genetics and Cell Physiology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jan Hackel
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
- Department of Biology, University of Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Alexandre R Zuntini
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Pat Heslop-Harrison
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Maria S Vorontsova
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| |
Collapse
|
3
|
da Costa Lima Moraes A, Mollinari M, Ferreira RCU, Aono A, de Castro Lara LA, Pessoa-Filho M, Barrios SCL, Garcia AAF, do Valle CB, de Souza AP, Vigna BBZ. Advances in genomic characterization of Urochloa humidicola: exploring polyploid inheritance and apomixis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:238. [PMID: 37919432 DOI: 10.1007/s00122-023-04485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
KEY MESSAGE We present the highest-density genetic map for the hexaploid Urochloa humidicola. SNP markers expose genetic organization, reproduction, and species origin, aiding polyploid and tropical forage research. Tropical forage grasses are an important food source for animal feeding, with Urochloa humidicola, also known as Koronivia grass, being one of the main pasture grasses for poorly drained soils in the tropics. However, genetic and genomic resources for this species are lacking due to its genomic complexity, including high heterozygosity, evidence of segmental allopolyploidy, and reproduction by apomixis. These complexities hinder the application of marker-assisted selection (MAS) in breeding programs. Here, we developed the highest-density linkage map currently available for the hexaploid tropical forage grass U. humidicola. This map was constructed using a biparental F1 population generated from a cross between the female parent H031 (CIAT 26146), the only known sexual genotype for the species, and the apomictic male parent H016 (BRS cv. Tupi). The linkage analysis included 4873 single nucleotide polymorphism (SNP) markers with allele dosage information. It allowed mapping of the ASGR locus and apospory phenotype to linkage group 3, in a region syntenic with chromosome 3 of Urochloa ruziziensis and chromosome 1 of Setaria italica. We also identified hexaploid haplotypes for all individuals, assessed the meiotic configuration, and estimated the level of preferential pairing in parents during the meiotic process, which revealed the autopolyploid origin of sexual H031 in contrast to apomictic H016, which presented allopolyploid behavior in preferential pairing analysis. These results provide new information regarding the genetic organization, mode of reproduction, and allopolyploid origin of U. humidicola, potential SNPs markers associated with apomixis for MAS and resources for research on polyploids and tropical forage grasses.
Collapse
Affiliation(s)
- Aline da Costa Lima Moraes
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo Mollinari
- Department of Horticultural Science, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | | | - Alexandre Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | | | | | | | - Anete Pereira de Souza
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | |
Collapse
|
4
|
Dusi DMA, Alves ER, Cabral GB, Mello LV, Rigden DJ, Silveira ÉD, Alves-Ferreira M, Guimarães LA, Gomes ACMM, Rodrigues JCM, Carneiro VTC. An exonuclease V homologue is expressed predominantly during early megasporogenesis in apomictic Brachiaria brizantha. PLANTA 2023; 258:5. [PMID: 37219749 DOI: 10.1007/s00425-023-04162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
MAIN CONCLUSION An exonuclease V homologue from apomictic Brachiaria brizantha is expressed and localized in nucellar cells at key moments when these cells differentiate to give rise to unreduced gametophytes. Brachiaria is a genus of forage grasses with economical and agricultural importance to Brazil. Brachiaria reproduces by aposporic apomixis, in which unreduced embryo sacs, derived from nucellar cells, other than the megaspore mother cell (MMC), are formed. The unreduced embryo sacs produce an embryo without fertilization resulting in clones of the mother plant. Comparative gene expression analysis in ovaries of sexual and apomictic Brachiaria spp. revealed a sequence from B. brizantha that showed a distinct pattern of expression in ovaries of sexual and apomictic plants. In this work, we describe a gene named BbrizExoV with strong identity to exonuclease V (Exo V) genes from other grasses. Sequence analysis in signal prediction tools showed that BbrizExoV might have dual localization, depending on the translation point. A longer form to the nucleus and a shorter form which would be directed to the chloroplast. This is also the case for monocot sequences analyzed from other species. The long form of BbrizExoV protein localizes to the nucleus of onion epidermal cells. Analysis of ExoV proteins from dicot species, with exception of Arabidopsis thaliana ExoVL protein, showed only one localization. Using a template-based AlphaFold 2 modelling approach the structure of BbrizExoV in complex with metal and ssDNA was predicted based on the holo structure of the human counterpart. Features predicted to define ssDNA binding but a lack of sequence specificity are shared between the human enzyme and BbrizExoV. Expression analyses indicated the precise site and timing of transcript accumulation during ovule development, which coincides with the differentiation of nucelar cells to form the typical aposporic four-celled unreduced gametophyte. A putative function for this protein is proposed based on its homology and expression pattern.
Collapse
Affiliation(s)
- Diva M A Dusi
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx. Postal 02372, Brasilia, DF, 70770-917, Brazil
| | - Elizângela R Alves
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx. Postal 02372, Brasilia, DF, 70770-917, Brazil
- Department of Celular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Gláucia B Cabral
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx. Postal 02372, Brasilia, DF, 70770-917, Brazil
| | - Luciane V Mello
- School of Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK
| | - Érica D Silveira
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx. Postal 02372, Brasilia, DF, 70770-917, Brazil
- Department of Genetics, Universidade Federal do Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco, s/n Prédio do CCS Instituto de Biologia, Rio de Janeiro, RJ, Brazil
| | - Márcio Alves-Ferreira
- Department of Genetics, Universidade Federal do Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco, s/n Prédio do CCS Instituto de Biologia, Rio de Janeiro, RJ, Brazil
| | - Larissa A Guimarães
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx. Postal 02372, Brasilia, DF, 70770-917, Brazil
- Department of Celular Biology, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - Ana Cristina M M Gomes
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx. Postal 02372, Brasilia, DF, 70770-917, Brazil
| | - Júlio C M Rodrigues
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx. Postal 02372, Brasilia, DF, 70770-917, Brazil.
| | - Vera T C Carneiro
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx. Postal 02372, Brasilia, DF, 70770-917, Brazil.
| |
Collapse
|
5
|
Bellucci M, Caceres ME, Paolocci F, Vega JM, Ortiz JPA, Ceccarelli M, De Marchis F, Pupilli F. ORIGIN OF RECOGNITION COMPLEX 3 controls the development of maternal excess endosperm in the Paspalum simplex agamic complex (Poaceae). JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3074-3093. [PMID: 36812152 DOI: 10.1093/jxb/erad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 05/21/2023]
Abstract
Pseudogamous apomixis in Paspalum simplex generates seeds with embryos genetically identical to the mother plant and endosperms deviating from the canonical 2(maternal):1(paternal) parental genome contribution into a maternal excess 4m:1p genome ratio. In P. simplex, the gene homologous to that coding for subunit 3 of the ORIGIN OF RECOGNITION COMPLEX (PsORC3) exists in three isogenic forms: PsORC3a is apomixis specific and constitutively expressed in developing endosperm whereas PsORCb and PsORCc are up-regulated in sexual endosperms and silenced in apomictic ones. This raises the question of how the different arrangement and expression profiles of these three ORC3 isogenes are linked to seed development in interploidy crosses generating maternal excess endosperms. We demonstrate that down-regulation of PsORC3b in sexual tetraploid plants is sufficient to restore seed fertility in interploidy 4n×2n crosses and, in turn, its expression level at the transition from proliferating to endoreduplication endosperm developmental stages dictates the fate of these seeds. Furthermore, we show that only when being maternally inherited can PsORC3c up-regulate PsORC3b. Our findings lay the basis for an innovative route-based on ORC3 manipulation-to introgress the apomictic trait into sexual crops and overcome the fertilization barriers in interploidy crosses.
Collapse
Affiliation(s)
- Michele Bellucci
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Maria Eugenia Caceres
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Francesco Paolocci
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Juan Manuel Vega
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR and Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Juan Pablo Amelio Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR and Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Marilena Ceccarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| |
Collapse
|
6
|
Spotting the Targets of the Apospory Controller TGS1 in Paspalum notatum. PLANTS 2022; 11:plants11151929. [PMID: 35893633 PMCID: PMC9332697 DOI: 10.3390/plants11151929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Sexuality and apomixis are interconnected plant reproductive routes possibly behaving as polyphenic traits under the influence of the environment. In the subtropical grass Paspalum notatum, one of the controllers of apospory, a main component of gametophytic apomixis reproduction, is TRIMETHYLGUANOSINE SYNTHASE 1 (TGS1), a multifunctional gene previously associated with RNA cleavage regulation (including mRNA splicing as well as rRNA and miRNA processing), transcriptional modulation and the establishment of heterochromatin. In particular, the downregulation of TGS1 induces a sexuality decline and the emergence of aposporous-like embryo sacs. The present work was aimed at identifying TGS1 target RNAs expressed during reproductive development of Paspalum notatum. First, we mined available RNA databases originated from spikelets of sexual and apomictic plants, which naturally display a contrasting TGS1 representation, to identify differentially expressed mRNA splice variants and miRNAs. Then, the role of TGS1 in the generation of these particular molecules was investigated in antisense tgs1 sexual lines. We found that CHLOROPHYLL A-B BINDING PROTEIN 1B-21 (LHC Ib-21, a component of the chloroplast light harvesting complex), QUI-GON JINN (QGJ, encoding a MAP3K previously associated with apomixis) and miR2275 (a meiotic 24-nt phasi-RNAs producer) are directly or indirectly targeted by TGS1. Our results point to a coordinated control exercised by signal transduction and siRNA machineries to induce the transition from sexuality to apomixis.
Collapse
|
7
|
Roy AK, Chakraborti M, Radhakrishna A, Dwivedi KK, Srivastava MK, Saxena S, Paul S, Khare A, Malaviya DR, Kaushal P. Alien genome mobilization and fixation utilizing an apomixis mediated genome addition (AMGA) strategy in Pennisetum to improve domestication traits of P. squamulatum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2555-2575. [PMID: 35726065 DOI: 10.1007/s00122-022-04138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
An approach to release 'frozen' variability in apomictic species using sexuality of another species, eventually its utilization in crop improvement and de-novo domestication of crop wild relatives is presented. Pennisetum squamulatum, a secondary gene pool species of pearl millet (P. glaucum), harbours many desirable traits. However, it was neither utilized to improve pearl millet fodder traits nor improvement of its own domestication traits was attempted, due to the complexities of genomes and apomictic reproduction. To overcome this, we followed an Apomixis Mediated Genome Addition (AMGA) strategy and utilized the contrasting reproductive capacities (sexuality and apomixis) of both the species to access the otherwise un-available variability embedded in P. squamulatum. Segregating population of interspecific hybrids exhibited significant variability and heterosis for desired morphological, agronomical, and nutritional traits. Elite apomictic and perennial hybrids were evaluated in breeding trials, and eventually a novel grass cultivar was released for commercial cultivation in India. The performance of newly developed cultivar was superior to other adapted perennial grasses of arid and semi-arid rangelands. Through AMGA, the sexuality of one species was successfully utilized to 'release' the 'frozen' variability embedded in another species. Subsequently, the hybrids representing desirable trait combinations were again 'fixed' utilizing the apomixis alleles from the male parent in a back-and-forth apomixis-sexual-apomixis selection cycle. This study also demonstrated the potential of AMGA to improve crop relatives through genomes introgression as well as de novo domestication of new crops from wild species.
Collapse
Affiliation(s)
- A K Roy
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - M Chakraborti
- ICAR - National Rice Research Institute, Cuttack, 753006, India
| | - A Radhakrishna
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - K K Dwivedi
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - M K Srivastava
- ICAR - Indian Institute of Soybean Research, Indore, 452001, India
| | - S Saxena
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - S Paul
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - Aarti Khare
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - D R Malaviya
- ICAR - Indian Institute of Sugarcane Research, Lucknow, 226002, India
| | - P Kaushal
- ICAR - National Institute of Biotic Stress Management, Raipur, 493225, India.
| |
Collapse
|
8
|
Siena LA, Azzaro CA, Podio M, Stein J, Leblanc O, Pessino SC, Ortiz JPA. The Auxin-Response Repressor IAA30 Is Down-Regulated in Reproductive Tissues of Apomictic Paspalum notatum. PLANTS 2022; 11:plants11111472. [PMID: 35684245 PMCID: PMC9182604 DOI: 10.3390/plants11111472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
The capacity for apomixis in Paspalum notatum is controlled by a single-dominant genomic region, which shows strong synteny to a portion of rice chromosome 12 long arm. The locus LOC_Os12g40890, encoding the Auxin/Indole-3-Acetic Acid (Aux/IAA) family member OsIAA30, is located in this rice genomic segment. The objectives of this work were to identify transcripts coding for Aux/IAA proteins expressed in reproductive tissues of P. notatum, detect the OsIAA30 putative ortholog and analyze its temporal and spatial expression pattern in reproductive organs of sexual and apomictic plants. Thirty-three transcripts coding for AUX/IAA proteins were identified. Predicted protein alignment and phylogenetic analysis detected a highly similar sequence to OsIAA30 (named as PnIAA30) present in both sexual and apomictic samples. The expression assays of PnIAA30 showed a significant down-regulation in apomictic spikelets compared to sexual ones at the stages of anthesis and post-anthesis, representation levels negatively correlated with apospory expressivity and different localizations in sexual and apomictic ovules. Several PnIAA30 predicted interactors also appeared differentially regulated in the sexual and apomictic floral transcriptomes. Our results showed that an auxin-response repressor similar to OsIAA30 is down-regulated in apomictic spikelets of P. notatum and suggests a contrasting regulation of auxin signaling during sexual and asexual seed formation.
Collapse
Affiliation(s)
- Lorena Adelina Siena
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Celeste Antonela Azzaro
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Maricel Podio
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Juliana Stein
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Olivier Leblanc
- DIADE, Université de Montpellier, IRD, CIRAD, 34394 Montpellier, France;
| | - Silvina Claudia Pessino
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
| | - Juan Pablo Amelio Ortiz
- Laboratorio de Biología Molecular, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) CONICET-UNR, Facultad de Ciencias Agrarias, Campo Experimental Villarino, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina; (L.A.S.); (C.A.A.); (M.P.); (J.S.); (S.C.P.)
- Correspondence: ; Tel.: +54-341-4970080/85 (ext. 1180)
| |
Collapse
|
9
|
Molecular Basis of Apomixis in Plants. Genes (Basel) 2021; 12:genes12040576. [PMID: 33923377 PMCID: PMC8071507 DOI: 10.3390/genes12040576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022] Open
|
10
|
Proceedings of the 7th Series of Seminars on Advances in Apomixis Research. PLANTS 2021; 10:plants10030565. [PMID: 33802754 PMCID: PMC8002402 DOI: 10.3390/plants10030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022]
Abstract
These proceedings contain the abstracts for the presentations given at the 7th biennial Seminars on Advances in Apomixis Research, held virtually on 2-3 and 9 December 2020. The first day hosted the kick-off meeting of the EU-funded Mechanisms of Apomictic Development (MAD) project, while the remaining days were dedicated to oral presentations and in-depth exchanges on the latest progress in the field of apomixis and plant reproductive biology research.
Collapse
|
11
|
A study of the heterochronic sense/antisense RNA representation in florets of sexual and apomictic Paspalum notatum. BMC Genomics 2021; 22:185. [PMID: 33726667 PMCID: PMC7962388 DOI: 10.1186/s12864-021-07450-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Apomixis, an asexual mode of plant reproduction, is a genetically heritable trait evolutionarily related to sexuality, which enables the fixation of heterozygous genetic combinations through the development of maternal seeds. Recently, reference floral transcriptomes were generated from sexual and apomictic biotypes of Paspalum notatum, one of the most well-known plant models for the study of apomixis. However, the transcriptome dynamics, the occurrence of apomixis vs. sexual expression heterochronicity across consecutive developmental steps and the orientation of transcription (sense/antisense) remain unexplored. Results We produced 24 Illumina TruSeq®/ Hiseq 1500 sense/antisense floral transcriptome libraries covering four developmental stages (premeiosis, meiosis, postmeiosis, and anthesis) in biological triplicates, from an obligate apomictic and a full sexual genotype. De novo assemblies with Trinity yielded 103,699 and 100,114 transcripts for the apomictic and sexual samples respectively. A global comparative analysis involving reads from all developmental stages revealed 19,352 differentially expressed sense transcripts, of which 13,205 (68%) and 6147 (32%) were up- and down-regulated in apomictic samples with respect to the sexual ones. Interestingly, 100 differentially expressed antisense transcripts were detected, 55 (55%) of them up- and 45 (45%) down-regulated in apomictic libraries. A stage-by-stage comparative analysis showed a higher number of differentially expressed candidates due to heterochronicity discrimination: the highest number of differential sense transcripts was detected at premeiosis (23,651), followed by meiosis (22,830), postmeiosis (19,100), and anthesis (17,962), while the highest number of differential antisense transcripts were detected at anthesis (495), followed by postmeiosis (164), meiosis (120) and premeiosis (115). Members of the AP2, ARF, MYB and WRKY transcription factor families, as well as the auxin, jasmonate and cytokinin plant hormone families appeared broadly deregulated. Moreover, the chronological expression profile of several well-characterized apomixis controllers was examined in detail. Conclusions This work provides a quantitative sense/antisense gene expression catalogue covering several subsequent reproductive developmental stages from premeiosis to anthesis for apomictic and sexual P. notatum, with potential to reveal heterochronic expression between reproductive types and discover sense/antisense mediated regulation. We detected a contrasting transcriptional and hormonal control in apomixis and sexuality as well as specific sense/antisense modulation occurring at the onset of parthenogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07450-3.
Collapse
|