1
|
Lipkin E, Smith J, Soller M, Burt DW, Fulton JE. Mapping quantitative trait loci regions associated with Marek's disease on chicken autosomes by means of selective DNA pooling. Sci Rep 2024; 14:31896. [PMID: 39738313 DOI: 10.1038/s41598-024-83356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025] Open
Abstract
Marek's Disease (MD), which can result in neurological damage and tumour formation, has large effects on the economy and animal welfare of the poultry industry worldwide. Previously, we mapped autosomal MD QTL regions (QTLRs) by individual genotyping of an F6 population from a full-sib advanced intercross line. We further mapped MD QTLRs on the chicken Z chromosome (GGZ) using the same F6 population, and by selective DNA pooling (SDP) of 8 elite egg production lines. Here we used SDP of the same pools used on GGZ to map autosomal MD QTLRs. Thirty-seven QTLRs were found. Seven of the QTLRs were tested by all sires from the same 8 lines, individually genotyped for QTLR markers. Five of the tested QTLRs were confirmed. Linkage disequilibrium (LD) was calculated for all QTLR markers on the same chromosome, and complex LD blocks were found. Distribution of P and LD values were used to assess the QTLR causative elements. Allele substitution effects were calculated based on both pooled SNP microarray genotypes, and individual genotypes of QTLRs markers. Substantial allele effect and contribution to the phenotypic and genotypic variation were obtained. The results explain part of the MD response, and provide targets for mitigating MD.
Collapse
Affiliation(s)
- Ehud Lipkin
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Morris Soller
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Janet E Fulton
- Hy-Line International, 2583 240th St, PO Box 310, Dallas Center, 50063, IA, USA
| |
Collapse
|
2
|
Liu P, Luo N, Liu D, Ying F, Zhu D, Wen J, Zhao G, An B. Integrating GWAS and transcriptomics to identify candidate genes conferring relative growth rate trait in white-feathered broiler. Poult Sci 2024; 103:104338. [PMID: 39426221 PMCID: PMC11536000 DOI: 10.1016/j.psj.2024.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 10/21/2024] Open
Abstract
Broilers are a globally significant resource for food production, and their relative growth rate (RGR) has attracted increasing attention for improving broiler monitoring, feed management and feed conversion. The main objectives of this study were to identify key candidate genes affecting the RGR in white-feathered broiler by integrating genomic and transcriptomic datasets. This study reports a meta-analysis of genome-wide association studies (GWAS) using 3 purebred lines (n = 3,727) and 5,841,467 input SNPs to understand the genetic control of the RGR. A total of 101 associated SNPs located on 6 chromosomes were identified, 16 of which were common in the GWAS and meta cohorts. Fine mapping of a significant peak with 7 linked SNP (r2 > 0.94) located within the coding region of RAP2C revealed that chr4:3474286 (C > G) among these SNPs was a highly putative causal variant (PIP = 19%) and explained 2.26% of the RGR variation. Further analyses indicated that the surface expression level of the RAP2C gene in the blood, macrophage, lung tissue, and cecum tissue of commercial broiler breed (Ross) was higher than in the corresponding tissues of other egg-laying hens and local breeds. In addition, there was a significant difference in the expression of the RAP2C gene between the high (H, n = 5) and low (L, n = 4) RGR groups. A total of 301 differentially expressed genes (DEGs) related to the RGR in white-feathered broiler were identified by transcriptome differential analysis between the H and L populations, among which NFKBIA, CSF1R and TLR2A were important hub genes. Furthermore, the candidate genes identified based on GWASs, meta-analysis and DEGs analysis were significantly enriched for gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in the growth cone, integrated-mediated signaling pathway, and MAPK signaling pathway. Overall, the RAP2C, NFKBIA, CSF1R and TLR2A genes are considered the most important candidate genes influencing RGR trait in white-feathered broiler. These findings provide valuable insights into the complex system that regulates broiler growth.
Collapse
Affiliation(s)
- Peihao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Na Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dawei Liu
- MiLe Xinguang Agricultural and Animal Industrials Corporation, MiLe, 652300, China
| | - Fan Ying
- MiLe Xinguang Agricultural and Animal Industrials Corporation, MiLe, 652300, China
| | - Dan Zhu
- MiLe Xinguang Agricultural and Animal Industrials Corporation, MiLe, 652300, China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bingxing An
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, 8000, Denmark.
| |
Collapse
|
3
|
Rachman MP, Bamidele O, Dessie T, Smith J, Hanotte O, Gheyas AA. Genomic analysis of Nigerian indigenous chickens reveals their genetic diversity and adaptation to heat-stress. Sci Rep 2024; 14:2209. [PMID: 38278850 PMCID: PMC10817956 DOI: 10.1038/s41598-024-52569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Indigenous poultry breeds from Africa can survive in harsh tropical environments (such as long arid seasons, excessive rain and humidity, and extreme heat) and are resilient to disease challenges, but they are not productive compared to their commercial counterparts. Their adaptive characteristics are in response to natural selection or to artificial selection for production traits that have left selection signatures in the genome. Identifying these signatures of positive selection can provide insight into the genetic bases of tropical adaptations observed in indigenous poultry and thereby help to develop robust and high-performing breeds for extreme tropical climates. Here, we present the first large-scale whole-genome sequencing analysis of Nigerian indigenous chickens from different agro-climatic conditions, investigating their genetic diversity and adaptation to tropical hot climates (extreme arid and extreme humid conditions). The study shows a large extant genetic diversity but low level of population differentiation. Using different selection signature analyses, several candidate genes for adaptation were detected, especially in relation to thermotolerance and immune response (e.g., cytochrome P450 2B4-like, TSHR, HSF1, CDC37, SFTPB, HIF3A, SLC44A2, and ILF3 genes). These results have important implications for conserving valuable genetic resources and breeding improvement of chickens for thermotolerance.
Collapse
Affiliation(s)
- Mifta P Rachman
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK.
| | - Oladeji Bamidele
- African Chicken Genetic Gains (ACGG), Department of Animal Sciences, Obafemi Awolowo University, Ile Ife, 220282, Nigeria
| | - Tadelle Dessie
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Jacqueline Smith
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Olivier Hanotte
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia.
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Almas A Gheyas
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
4
|
Warren WC, Rice ES, Meyer A, Hearn CJ, Steep A, Hunt HD, Monson MS, Lamont SJ, Cheng HH. The immune cell landscape and response of Marek's disease resistant and susceptible chickens infected with Marek's disease virus. Sci Rep 2023; 13:5355. [PMID: 37005445 PMCID: PMC10067856 DOI: 10.1038/s41598-023-32308-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Genetically resistant or susceptible chickens to Marek's disease (MD) have been widely used models to identify the molecular determinants of these phenotypes. However, these prior studies lacked the basic identification and understanding of immune cell types that could be translated toward improved MD control. To gain insights into specific immune cell types and their responses to Marek's disease virus (MDV) infection, we used single-cell RNA sequencing (scRNAseq) on splenic cells from MD resistant and susceptible birds. In total, 14,378 cells formed clusters that identified various immune cell types. Lymphocytes, specifically T cell subtypes, were the most abundant with significant proportional changes in some subtypes upon infection. The largest number of differentially expressed genes (DEG) response was seen in granulocytes, while macrophage DEGs differed in directionality by subtype and line. Among the most DEG in almost all immune cell types were granzyme and granulysin, both associated with cell-perforating processes. Protein interactive network analyses revealed multiple overlapping canonical pathways within both lymphoid and myeloid cell lineages. This initial estimation of the chicken immune cell type landscape and its accompanying response will greatly aid efforts in identifying specific cell types and improving our knowledge of host response to viral infection.
Collapse
Affiliation(s)
- Wesley C Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA.
| | - Edward S Rice
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Ashley Meyer
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Cari J Hearn
- Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA
| | - Alec Steep
- Department of Human Genetics Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Henry D Hunt
- Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA
| | - Melissa S Monson
- Department of Animal Science, Iowa State University, Ames, IA, USA
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, NADC, Ames, IA, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Hans H Cheng
- Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA.
| |
Collapse
|
5
|
Han L, Wu S, Zhang T, Peng W, Zhao M, Yue C, Wen W, Cai W, Li M, Wallny HJ, Avila DW, Mwangi W, Nair V, Ternette N, Guo Y, Zhao Y, Chai Y, Qi J, Liang H, Gao GF, Kaufman J, Liu WJ. A Wider and Deeper Peptide-Binding Groove for the Class I Molecules from B15 Compared with B19 Chickens Correlates with Relative Resistance to Marek's Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:668-680. [PMID: 36695776 PMCID: PMC7614295 DOI: 10.4049/jimmunol.2200211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023]
Abstract
The chicken MHC is known to confer decisive resistance or susceptibility to various economically important pathogens, including the iconic oncogenic herpesvirus that causes Marek's disease (MD). Only one classical class I gene, BF2, is expressed at a high level in chickens, so it was relatively easy to discern a hierarchy from well-expressed thermostable fastidious specialist alleles to promiscuous generalist alleles that are less stable and expressed less on the cell surface. The class I molecule BF2*1901 is better expressed and more thermostable than the closely related BF2*1501, but the peptide motif was not simpler as expected. In this study, we confirm for newly developed chicken lines that the chicken MHC haplotype B15 confers resistance to MD compared with B19. Using gas phase sequencing and immunopeptidomics, we find that BF2*1901 binds a greater variety of amino acids in some anchor positions than does BF2*1501. However, by x-ray crystallography, we find that the peptide-binding groove of BF2*1901 is narrower and shallower. Although the self-peptides that bound to BF2*1901 may appear more various than those of BF2*1501, the structures show that the wider and deeper peptide-binding groove of BF2*1501 allows stronger binding and thus more peptides overall, correlating with the expected hierarchies for expression level, thermostability, and MD resistance. Our study provides a reasonable explanation for greater promiscuity for BF2*1501 compared with BF2*1901, corresponding to the difference in resistance to MD.
Collapse
Affiliation(s)
- Lingxia Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- National Poultry Laboratory Animal Resource Center, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin 150069, China
| | - Shaolian Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Zhang
- Biosafety Level-3 Laboratory, Life Sciences Institute & Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi 530021, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Weiyu Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Min Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Can Yue
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanxin Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wenbo Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Min Li
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | | | - David W. Avila
- The Basel Institute for Immunology, Basel CH4001, Switzerland
| | - William Mwangi
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Nicola Ternette
- Nuffield Department of Medicine, University of Oxford, Headington OX37BN, United Kingdom
| | - Yaxin Guo
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Liang
- Biosafety Level-3 Laboratory, Life Sciences Institute & Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| | - Jim Kaufman
- The Basel Institute for Immunology, Basel CH4001, Switzerland
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
- Department of Veterinary Science, University of Cambridge, Cambridge CB3 0ES, United Kingdom
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - William J. Liu
- Biosafety Level-3 Laboratory, Life Sciences Institute & Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi 530021, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| |
Collapse
|
6
|
Gul H, Habib G, Khan IM, Rahman SU, Khan NM, Wang H, Khan NU, Liu Y. Genetic resilience in chickens against bacterial, viral and protozoal pathogens. Front Vet Sci 2022; 9:1032983. [PMID: 36439341 PMCID: PMC9691405 DOI: 10.3389/fvets.2022.1032983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 06/13/2024] Open
Abstract
The genome contributes to the uniqueness of an individual breed, and enables distinctive characteristics to be passed from one generation to the next. The allelic heterogeneity of a certain breed results in a different response to a pathogen with different genomic expression. Disease resistance in chicken is a polygenic trait that involves different genes that confer resistance against pathogens. Such resistance also involves major histocompatibility (MHC) molecules, immunoglobulins, cytokines, interleukins, T and B cells, and CD4+ and CD8+ T lymphocytes, which are involved in host protection. The MHC is associated with antigen presentation, antibody production, and cytokine stimulation, which highlight its role in disease resistance. The natural resistance-associated macrophage protein 1 (Nramp-1), interferon (IFN), myxovirus-resistance gene, myeloid differentiation primary response 88 (MyD88), receptor-interacting serine/threonine kinase 2 (RIP2), and heterophile cells are involved in disease resistance and susceptibility of chicken. Studies related to disease resistance genetics, epigenetics, and quantitative trait loci would enable the identification of resistance markers and the development of disease resistance breeds. Microbial infections are responsible for significant outbreaks and have blighted the poultry industry. Breeding disease-resistant chicken strains may be helpful in tackling pathogens and increasing the current understanding on host genetics in the fight against communicable diseases. Advanced technologies, such as the CRISPR/Cas9 system, whole genome sequencing, RNA sequencing, and high-density single nucleotide polymorphism (SNP) genotyping, aid the development of resistant breeds, which would significantly decrease the use of antibiotics and vaccination in poultry. In this review, we aimed to reveal the recent genetic basis of infection and genomic modification that increase resistance against different pathogens in chickens.
Collapse
Affiliation(s)
- Haji Gul
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Gul Habib
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Sajid Ur Rahman
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Hongcheng Wang
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|
7
|
Fulton JE, Drobik-Czwarno W, Wolc A, McCarron AM, Lund AR, Schmidt CJ, Taylor RL. The Chicken A and E Blood Systems Arise from Genetic Variation in and around the Regulators of Complement Activation Region. THE JOURNAL OF IMMUNOLOGY 2022; 209:1128-1137. [DOI: 10.4049/jimmunol.2101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/07/2022] [Indexed: 01/04/2023]
Abstract
Abstract
The tightly linked A and E blood alloantigen systems are 2 of 13 blood systems identified in chickens. Reported herein are studies showing that the genes encoding A and E alloantigens map within or near to the chicken regulator of complement activation (RCA) gene cluster, a region syntenic with the human RCA. Genome-wide association studies, sequence analysis, and sequence-derived single-nucleotide polymorphism information for known A and/or E system alleles show that the most likely candidate gene for the A blood system is C4BPM gene (complement component 4 binding protein, membrane). Cosegregation of single-nucleotide polymorphism–defined C4BPM haplotypes and blood system A alleles defined by alloantisera provide a link between chicken blood system A and C4BPM. The best match for the E blood system is the avian equivalent of FCAMR (Fc fragment of IgA and IgM receptor). C4BPM is located within the chicken RCA on chicken microchromosome 26 and is separated from FCAMR by 89 kbp. The genetic variation observed at C4BPM and FCAMR could affect the chicken complement system and differentially guide immune responses to infectious diseases.
Collapse
Affiliation(s)
- Janet E. Fulton
- *Research and Development, Hy-Line International, Dallas Center, IA
| | - Wiola Drobik-Czwarno
- †Department of Animal Genetics and Conservation, Institute of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Wolc
- *Research and Development, Hy-Line International, Dallas Center, IA
- ‡Department of Animal Science, Iowa State University, Ames, IA
| | - Amy M. McCarron
- *Research and Development, Hy-Line International, Dallas Center, IA
| | - Ashlee R. Lund
- *Research and Development, Hy-Line International, Dallas Center, IA
| | - Carl J. Schmidt
- §Department of Animal and Food Science, University of Delaware, Newark, DE; and
| | - Robert L. Taylor
- ¶Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV
| |
Collapse
|
8
|
Martinez ME, Stacy NI, Wellehan JFX, Archer LL, Frasca S, Rios C, Trumbull EJ, Rivard M, Whitmer ER, Field CL, Duignan PJ. Diffuse large B cell lymphoma and a novel gammaherpesvirus in northern elephant seals Mirounga angustirostris. DISEASES OF AQUATIC ORGANISMS 2022; 149:59-70. [PMID: 35608510 DOI: 10.3354/dao03662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two emaciated male northern elephant seal (NES) Mirounga angustirostris pups were admitted to The Marine Mammal Center (Sausalito, California, USA) and treated for malnutrition. Complete blood counts showed a progressive moderate to marked leukocytosis characterized by a predominance of large monomorphic mononuclear cells of probable lymphoid origin, frequently with flower-shaped nuclei. Both seals were euthanized due to suspected lymphoid neoplasia. At necropsy, most lymph nodes in both pups were markedly enlarged, some with distinct white nodules, the spleens were diffusely enlarged, and the intestinal mucosae were thickened. Histopathologic features consistent with disseminated large cell lymphoma were identified to varying degrees of severity in lymph nodes, bone marrow, liver, tonsils, spleen, liver, intestines, kidneys, lower urinary tract, and several other organs. Immunohistochemical staining of neoplastic cells was most consistent with B lymphocyte origin, with most cells staining positively for Pax 5 and CD20 with admixed small CD3-positive T lymphocytes and CD204-positive macrophages. PCR and sequencing identified a novel gammaherpesvirus, herein called miroungine gammaherpesvirus 3, from affected tissues. This virus is in a clade outside of named genera that utilize hosts in the suborder Caniformia. The present study is the first description of diffuse large B cell lymphoma with leukemic manifestation and concomitant detection of a novel gammaherpesvirus in free-living NESs. Further research regarding the prevalence of this new gammaherpesvirus and its associated pathogenesis in this species is indicated.
Collapse
|
9
|
Dunn JR, Mays J, Hearn C, Hartman A. Comparison of Marek's disease virus challenge strains and bird types for vaccine licensing. Avian Dis 2021; 65:241-249. [PMID: 33567073 DOI: 10.1637/aviandiseases-d-20-00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/10/2021] [Indexed: 11/05/2022]
Abstract
Marek's disease virus (MDV) is an important poultry pathogen which is controlled through widespread vaccination with avirulent and attenuated strains, but continued evolution of field viruses to higher virulence has required ongoing improvement of available vaccine strains, and these vaccine strains also offer an attractive platform for designing recombinant vector vaccines with cross-protection against MDV and additional pathogens. Recent reports of failures in vaccine licensing trials of positive controls to reach appropriately high levels of MD incidence prompted us to evaluate possible combinations of outbred specific pathogen-free (SPF) layer lines and alternative virulent challenge strains which could provide more consistent models for serotype-3 vectored vaccine development. Choice of layer line and virulent MDV challenge strain each contributed to the ability of a challenge model to reach 80 percent virulence in unvaccinated positive control groups in the majority of trials without overwhelming serotype-3 vectored vaccine protection in vaccinated groups. Conversely, reducing challenge virus dose by a factor of four, or vaccine dose by half, had no consistent effect across these models. Although MDV strain 617A had the most potential as an alternative to strains that are currently approved for licensing trials, no combination of layer line and challenge virus consistently met the goals for a successful challenge model in all study replicates, indicating that high variability is an inherent difficulty in MDV challenge studies, at least when outbred birds are used.
Collapse
Affiliation(s)
- John R Dunn
- USDA-ARS Reviewer US National Poultry Research Center 934 College Station Rd UNITED STATES Athens GA 30605 1-706-546-3642
| | | | | | | |
Collapse
|