1
|
Ibrahim R, Bahilo Martinez M, Dobson AJ. Rapamycin's lifespan effect is modulated by mito-nuclear epistasis in Drosophila. Aging Cell 2024; 23:e14328. [PMID: 39225061 PMCID: PMC11634709 DOI: 10.1111/acel.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
The macrolide drug rapamycin is a benchmark anti-ageing drug, which robustly extends lifespan of diverse organisms. For any health intervention, it is paramount to establish whether benefits are distributed equitably among individuals and populations, and ideally to match intervention to recipients' needs. However, how responses to rapamycin vary is surprisingly understudied. Here we investigate how among-population variation in both mitochondrial and nuclear genetics shapes rapamycin's effects on lifespan. We show that epistatic "mito-nuclear" interactions, between mitochondria and nuclei, modulate the response to rapamycin treatment. Differences manifest as differential demographic effects of rapamycin, with altered age-specific mortality rate. However, a fitness cost of rapamycin early in life does not show a correlated response, suggesting that mito-nuclear epistasis can decouple costs and benefits of treatment. These findings suggest that a deeper understanding of how variation in mitochondrial and nuclear genomes shapes physiology may facilitate tailoring of anti-ageing therapy to individual need.
Collapse
Affiliation(s)
- Rita Ibrahim
- School of Molecular BiosciencesUniversity of GlasgowGlasgowUK
| | | | - Adam J. Dobson
- School of Molecular BiosciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
2
|
Landis GN, Baybutt B, Das S, Fan Y, Olsen K, Yan K, Tower J. Mifepristone and rapamycin have non-additive benefits for life span in mated female Drosophila. Fly (Austin) 2024; 18:2419151. [PMID: 39440794 PMCID: PMC11514543 DOI: 10.1080/19336934.2024.2419151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
The drugs mifepristone and rapamycin were compared for their relative ability to increase the life span of mated female Drosophila melanogaster. Titration of rapamycin indicated an optimal concentration of approximately 50 μM, which increased median life span here by average +81%. Meta-analysis of previous mifepristone titrations indicated an optimal concentration of approximately 466 μM, which increased median life span here by average +114%. Combining mifepristone with various concentrations of rapamycin did not produce further increases in life span, and instead reduced life span relative to either drug alone. Assay of maximum midgut diameter indicated that rapamycin was equally efficacious as mifepristone in reducing mating-induced midgut hypertrophy. The mito-QC mitophagy reporter is a previously described green fluorescent protein (GFP)-mCherry fusion protein targeted to the outer mitochondrial membrane. Inhibition of GFP fluorescence by the acidic environment of the autophagolysosome yields an increased red/green fluorescence ratio indicative of increased mitophagy. Creation of a multi-copy mito-QC reporter strain facilitated assay in live adult flies, as well as in dissected midgut tissue. Mifepristone was equally efficacious as rapamycin in activating the mito-QC mitophagy reporter in the adult female fat-body and midgut. The data suggest that mifepristone and rapamycin act through a common pathway to increase mated female Drosophila life span, and implicate increased mitophagy and decreased midgut hypertrophy in that pathway.
Collapse
Affiliation(s)
- Gary N. Landis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Britta Baybutt
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Shoham Das
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yijie Fan
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kate Olsen
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Karissa Yan
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Morozumi Y, Hayashi Y, Chu CM, Sofyantoro F, Akikusa Y, Fukuda T, Shiozaki K. Fission yeast Pib2 localizes to vacuolar membranes and regulates TOR complex 1 through evolutionarily conserved domains. FEBS Lett 2024; 598:2886-2896. [PMID: 39010328 DOI: 10.1002/1873-3468.14980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024]
Abstract
TOR complex 1 (TORC1) is a multi-protein kinase complex that coordinates cellular growth with environmental cues. Recent studies have identified Pib2 as a critical activator of TORC1 in budding yeast. Here, we show that loss of Pib2 causes severe growth defects in fission yeast cells, particularly when basal TORC1 activity is diminished by hypomorphic mutations in tor2, the gene encoding the catalytic subunit of TORC1. Consistently, TORC1 activity is significantly compromised in the tor2 hypomorphic mutants lacking Pib2. Moreover, as in budding yeast, fission yeast Pib2 localizes to vacuolar membranes via its FYVE domain, with its tail motif indispensable for TORC1 activation. These results strongly suggest that Pib2-mediated positive regulation of TORC1 is evolutionarily conserved between the two yeast species.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yumi Hayashi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Cuong Minh Chu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Fajar Sofyantoro
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yutaka Akikusa
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomoyuki Fukuda
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Dhungana P, Wei X, Meuti ME, Sim C. Genome-wide identification of PAR domain protein 1 (PDP1) targets through ChIP-seq reveals the regulation of diapause-specific characteristics in Culex pipiens. INSECT MOLECULAR BIOLOGY 2024; 33:777-791. [PMID: 38989821 PMCID: PMC11537818 DOI: 10.1111/imb.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Insects use seasonal diapause as an alternative strategy to endure adverse seasons. This developmental trajectory is induced by environmental cues like short-day lengths in late summer and early fall, but how insects measure day length is unknown. The circadian clock has been implicated in regulating photoperiodic or seasonal responses in many insects, including the Northern house mosquito, Culex pipiens, which enters adult diapause. To investigate the potential control of diapause by circadian control, we employed ChIP-sequencing to identify the downstream targets of a circadian transcription factor, PAR domain protein 1 (PDP1), that contribute to the hallmark features of diapause. We identified the nearest genes in a 10 kb region of the anticipated PDP1 binding sites, listed prospective targets and searched for PDP1-specific binding sites. By examining the functional relevance to diapause-specific behaviours and modifications such as metabolic pathways, lifespan extension, cell cycle regulation and stress tolerance, eight genes were selected as targets and validated using ChIP-qPCR. In addition, qRT-PCR demonstrated that the mRNA abundance of PDP1 targets increased in the heads of diapausing females during the middle of the scotophase (ZT17) compared with the early photophase (ZT1), in agreement with the peak and trough of PDP1 abundance. Thus, our investigation uncovered the mechanism by which PDP1 might generate a diapause phenotype in insects.
Collapse
Affiliation(s)
- Prabin Dhungana
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Xueyan Wei
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Megan E. Meuti
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
5
|
Wicaksono D, Taslim NA, Lau V, Syahputra RA, Alatas AI, Putra PP, Tallei TE, Tjandrawinata RR, Tsopmo A, Kim B, Nurkolis F. Elucidation of anti-human melanoma and anti-aging mechanisms of compounds from green seaweed Caulerpa racemosa. Sci Rep 2024; 14:27534. [PMID: 39528552 PMCID: PMC11555072 DOI: 10.1038/s41598-024-78464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Human melanoma is linked with aging-related disorders, prompting interest in the development of functional foods derived from natural ingredients to mitigate its incidence. Molecules in green seaweeds such as Caulerpa racemosa can serve this purpose due to their anti-tumor and anti-inflammatory properties. A previous work study compounds profiling has been carried out, and in this research the molecular docking studies targeting receptors associated with melanoma (GRP78, IRE1, BRAF) and aging (mTOR, AMPK, SIRT1) identified four promising compound in an extract of C. racemosa. The current study aims to the mechanism of those compounds at a cellular level using the human A375 (BRAF-V600E mutation) and A375 and B16-F10 cell lines. The MTT assay was used to evaluate the potential of GSCRE compounds against A375 and B16-F10 cell lines, with comparisons made to normal HDFa cell lines. Results indicated that compound C2, also known as Caulersin, demonstrated a significantly different ∆G affinity binding score compared to the control drug Dabrafenib. GSCRE crude extract, particularly C2, showed potential in modulating mTOR, AMPK, and SIRT1 pathways and downregulating GRP78, IRE1, and BRAF signaling (p < 0.05). Interestingly, C2 was less effective in suppressing A375 and B16-F10 cell lines (LD50 C2 < LD50 Dabrafenib/control), with its LD50 value nearly matching that of the Trametinib control in B16-F10 cell lines. Consequently, GSCRE, especially C2 or Caulersin, shows promise as a new molecule for developing functional foods to combat aging and human melanoma. However, further in vivo studies and clinical trials are necessary to confirm these findings.
Collapse
Affiliation(s)
- Danar Wicaksono
- Alumnus Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Vincent Lau
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | - Aiman Idrus Alatas
- Program of Clinical Microbiology Residency, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Purnawan Pontana Putra
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Andalas, Padang, 25163, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, 95115, Indonesia
| | - Raymond Rubianto Tjandrawinata
- Center for Pharmaceutical and Nutraceutical Research and Policy, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930, Indonesia
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel by Drive, Ottawa, ON, K1S 5B6, Canada
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Kyungheedae-Ro 26, Dong-Daemun-Gu, Seoul, 05254, South Korea
| | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, 55281, Indonesia.
- Medical Research Center of Indonesia (MERCIE), Surabaya, 60281, Indonesia.
| |
Collapse
|
6
|
Nunkoo VS, Cristian A, Jurcau A, Diaconu RG, Jurcau MC. The Quest for Eternal Youth: Hallmarks of Aging and Rejuvenating Therapeutic Strategies. Biomedicines 2024; 12:2540. [PMID: 39595108 PMCID: PMC11591597 DOI: 10.3390/biomedicines12112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The impressive achievements made in the last century in extending the lifespan have led to a significant growth rate of elderly individuals in populations across the world and an exponential increase in the incidence of age-related conditions such as cardiovascular diseases, diabetes mellitus type 2, and neurodegenerative diseases. To date, geroscientists have identified 12 hallmarks of aging (genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, impaired macroautophagy, mitochondrial dysfunction, impaired nutrient sensing, cellular senescence, stem cell exhaustion, defective intercellular communication, chronic inflammation, and gut dysbiosis), intricately linked among each other, which can be targeted with senolytic or senomorphic drugs, as well as with more aggressive approaches such as cell-based therapies. To date, side effects seriously limit the use of these drugs. However, since rejuvenation is a dream of mankind, future research is expected to improve the tolerability of the available drugs and highlight novel strategies. In the meantime, the medical community, healthcare providers, and society should decide when to start these treatments and how to tailor them individually.
Collapse
Affiliation(s)
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
7
|
Zhang H, Wang A, Xiao W, Mi S, Hu L, Brito LF, Guo G, Yan Q, Chen S, Wang Y. Genetic parameters and genome-wide association analyses for lifetime productivity in Chinese Holstein cattle. J Dairy Sci 2024; 107:9638-9655. [PMID: 39521485 DOI: 10.1016/j.jods.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/14/2024] [Indexed: 11/16/2024]
Abstract
Lifetime productivity is a trait of great importance to dairy cattle populations, as it combines information from production and longevity variables. Therefore, we investigated the genetic background of lifetime productivity in high-producing dairy cattle by integrating genomics and transcriptomics datasets. A total of 3,365,612 test-day milk yield records from 134,029 Chinese Holstein cows were used to define 6 lifetime productivity traits, including lifetime milk yield covering full lifespan and 5 cumulative milk yield traits covering partial lifespan. Genetic parameters were estimated based on univariate and bivariate linear animal models and the restricted maximum likelihood method. Genome-wide association studies and weighted gene co-expression network analyses (WGCNA) were performed to identify candidate genes associated with lifetime productivity based on genomic data from 3,424 cows and peripheral blood RNA-sequencing data from 23 cows, respectively. Lifetime milk yield averaged 24,800.8 ± 14,396.6 kg (mean ± SD) across an average of 2.4 parities in Chinese Holstein population. The heritability estimates for lifetime productivity traits ranged from 0.05 (±0.01 for SE) to 0.10 (±0.02 for SE). The estimate of genetic correlation between lifetime milk yield and productive life is 0.88 (±0.3 for SE), whereas the genetic correlation with 305-d milk yield in the first lactation was 0.49 (±0.08 for SE). Absolute values for most genetic correlation estimates between lifetime productivity and type traits were lower than 0.30. Moderate genetic correlations were found between udder related traits and lifetime productivity, such as with udder depth (0.33), rear udder attachment height (0.33), and udder system (0.34). Some single nucleotide polymorphisms and gene co-expression modules significantly associated with lifetime milk yield were identified based on GWAS and WGCNA analyses, respectively. Functional enrichment analyses of the candidate genes identified revealed important pathways related to immune system, longevity, energy utilization, and metabolism, and FoxO signaling. The genes NTMT1, FNBP1, and S1PR1 were considered to be the most important candidate genes influencing lifetime productivity in Holstein cows. Overall, our findings indicate that lifetime productivity is heritable in Chinese Holstein cattle, and important candidate genes were identified by integrating genomic and transcriptomic datasets.
Collapse
Affiliation(s)
- Hailiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Weiming Xiao
- Laboratory of Dairy Cattle Genetic Improvement and Milk Quality Research in Zhejiang Province, Wenzhou, 325000 China.
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Lirong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Gang Guo
- Beijing Sunlon Livestock Development Company Limited, Beijing, 100029 China
| | - Qingxia Yan
- Dairy Association of China, Beijing, 100193 China
| | - Shaohu Chen
- Dairy Association of China, Beijing, 100193 China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.
| |
Collapse
|
8
|
Tian Y, Shao S, Feng H, Zeng R, Li S, Zhang Q. Targeting senescent cells in atherosclerosis: Pathways to novel therapies. Ageing Res Rev 2024; 101:102502. [PMID: 39278272 DOI: 10.1016/j.arr.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
Targeting senescent cells has recently emerged as a promising strategy for treating age-related diseases, such as atherosclerosis, which significantly contributes to global cardiovascular morbidity and mortality. This review elucidates the role of senescent cells in the development of atherosclerosis, including persistently damaging DNA, inducing oxidative stress and secreting pro-inflammatory factors known as the senescence-associated secretory phenotype. Therapeutic approaches targeting senescent cells to mitigate atherosclerosis are summarized in this review, which include the development of senotherapeutics and immunotherapies. These therapies are designed to either remove these cells or suppress their deleterious effects. These emerging therapies hold potential to decelerate or even alleviate the progression of AS, paving the way for new avenues in cardiovascular research and treatment.
Collapse
Affiliation(s)
- Yuhan Tian
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Sihang Shao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Haibo Feng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China.
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Pharmacy, Sichuan Provincial People's Hospital East Sichuan Hospital & Dazhou First People's Hospital, Dazhou 635000, China.
| |
Collapse
|
9
|
Chen J, Li H, Huang Y, Tang Q. The role of high mobility group proteins in cellular senescence mechanisms. FRONTIERS IN AGING 2024; 5:1486281. [PMID: 39507236 PMCID: PMC11537863 DOI: 10.3389/fragi.2024.1486281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Aging is a universal physiological phenomenon, and chronic age-related diseases have become one of the leading causes of human mortality, accounting for nearly half of all deaths. Studies have shown that reducing the incidence of these diseases can not only extend lifespan but also promote healthy aging. In recent years, the potential role of non-histone high-mobility group proteins (HMGs) in the regulation of aging and lifespan has attracted widespread attention. HMGs play critical roles in cellular senescence and associated diseases through various pathways, encompassing multi-layered mechanisms involving protein interactions, molecular regulation, and chromatin dynamics. This review provides a comprehensive analysis of the interactions between HMG family proteins and senescence-associated secretory phenotype (SASP), chromatin structure, and histone modifications, offering a deeper exploration of the pivotal functions and impacts of HMGs in the aging process. Furthermore, we summarize recent findings on the contributions of HMG proteins to aging and age-related diseases. HMG proteins not only regulate senescence-associated inflammation through modulating the SASP but also influence genomic stability and cell fate decisions via interactions with chromatin and histones. Targeting HMG proteins holds great potential in delaying the progression of aging and its associated diseases. This review aims to provide a systematic overview of HMG proteins' roles in aging and to lay a solid foundation for future anti-aging drug development and therapeutic strategies. With the advancing understanding of the mechanisms by which HMGs regulate aging, developing therapeutic interventions targeting HMGs may emerge as a promising approach to extending lifespan and enhancing healthspan.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyu Li
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
10
|
Rodríguez-Vázquez M, Falconi J, Heron-Milhavet L, Lassus P, Géminard C, Djiane A. Fat body glycolysis defects inhibit mTOR and promote distant muscle disorganization through TNF-α/egr and ImpL2 signaling in Drosophila larvae. EMBO Rep 2024; 25:4410-4432. [PMID: 39251827 PMCID: PMC11467327 DOI: 10.1038/s44319-024-00241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
The fat body in Drosophila larvae functions as a reserve tissue and participates in the regulation of organismal growth and homeostasis through its endocrine activity. To better understand its role in growth coordination, we induced fat body atrophy by knocking down several key enzymes of the glycolytic pathway in adipose cells. Our results show that impairing the last steps of glycolysis leads to a drastic drop in adipose cell size and lipid droplet content, and downregulation of the mTOR pathway and REPTOR transcriptional activity. Strikingly, fat body atrophy results in the distant disorganization of body wall muscles and the release of muscle-specific proteins in the hemolymph. Furthermore, we showed that REPTOR activity is required for fat body atrophy downstream of glycolysis inhibition, and that the effect of fat body atrophy on muscles depends on the production of TNF-α/egr and of the insulin pathway inhibitor ImpL2.
Collapse
Affiliation(s)
| | | | | | - Patrice Lassus
- IRCM, Univ Montpellier, Inserm, ICM, CNRS, Montpellier, France
| | | | | |
Collapse
|
11
|
Zheng X. An Introductory Guide to Using Bloomington Drosophila Stock Center and FlyBase for Aging Research. Cells 2024; 13:1192. [PMID: 39056774 PMCID: PMC11275189 DOI: 10.3390/cells13141192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Studies on numerous species have demonstrated strikingly conserved mechanisms that determine the aging process, from yeasts to worms, flies, zebrafish, mice, and humans. The fruit fly Drosophila melanogaster is an excellent model organism for studying the biological basis of normal aging and etiology of age-related diseases. Since its inception in 1967, the Bloomington Drosophila Stock Center (BDSC) has grown into the largest collection of documented D. melanogaster strains (currently > 91,000). This paper aims to briefly review conserved mechanisms of aging and provides a guide to help users understand the organization of stock listings on the BDSC website and familiarize themselves with the search functions on BDSC and FlyBase, with an emphasis on using genes in conserved pathways as examples to find stocks for aging studies.
Collapse
Affiliation(s)
- Xiangzhong Zheng
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
12
|
Zhang H, Wang A, Xiao W, Mi S, Hu L, Brito LF, Guo G, Yan Q, Chen S, Wang Y. Genetic parameters and genome-wide association analyses for lifetime productivity in Chinese Holstein cattle. J Dairy Sci 2024:S0022-0302(24)00990-1. [PMID: 39004135 DOI: 10.3168/jds.2023-24632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Lifetime productivity is a trait of great importance to dairy cattle populations as it combines information from production and longevity variables. Therefore, we investigated the genetic background of lifetime productivity in high-producing dairy cattle by integrating genomics and transcriptomics data sets. A total of 3,365,612 test-day milk yield records from 134,029 Chinese Holstein cows were used to define 6 lifetime productivity traits, including lifetime milk yield covering full lifespan and 5 cumulative milk yield traits covering partial lifespan. Genetic parameters were estimated based on univariate and bivariate linear animal models and the Restricted Maximum Likelihood (REML) method. Genome-wide association studies (GWAS) and weighted gene co-expression network analyses (WGCNA) were performed to identify candidate genes associated with lifetime productivity based on genomic data from 3,424 cows and peripheral blood RNA-seq data from 23 cows, respectively. Lifetime milk yield averaged 24,800.8 ± 14,396.6 kg (mean ± SD) across an average of 2.4 parities in Chinese Holstein population. The heritability estimates for lifetime productivity traits ranged from 0.05 (±0.01 for SE) to 0.10 (±0.02 for SE). The estimate of genetic correlation between lifetime milk yield and productive life is 0.88 (±0.3 for SE) while the genetic correlation with 305d milk yield in the first lactation was 0.49 (±0.08 for SE). Absolute values for most genetic correlation estimates between lifetime productivity and type traits were lower than 0.30. Moderate genetic correlations were found between udder related traits and lifetime productivity, such as with udder depth (0.33), rear udder attachment height (0.33), and udder system (0.34). Some single nucleotide polymorphisms and gene co-expression modules significantly associated with lifetime milk yield were identified based on GWAS and WGCNA analyses, respectively. Functional enrichment analyses of the candidate genes identified revealed important pathways related to immune system, longevity, energy utilization and metabolism, and FoxO signaling. The genes NTMT1, FNBP1, and S1PR1 were considered to be the most important candidate genes influencing lifetime productivity in Holstein cows. Overall, our findings indicate that lifetime productivity is heritable in Chinese Holstein cattle and important candidate genes were identified by integrating genomic and transcriptomic data sets.
Collapse
Affiliation(s)
- Hailiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Weiming Xiao
- Laboratory of Dairy Cattle Genetic Improvement and Milk Quality Research in Zhejiang Province, Wenzhou, China.
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lirong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Gang Guo
- Beijing Sunlon Livestock Development Company Limited, Beijing, China
| | | | | | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
13
|
Ohtsuka H, Shimasaki T, Aiba H. Low-Molecular Weight Compounds that Extend the Chronological Lifespan of Yeasts, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Adv Biol (Weinh) 2024; 8:e2400138. [PMID: 38616173 DOI: 10.1002/adbi.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Yeast is an excellent model organism for research for regulating aging and lifespan, and the studies have made many contributions to date, including identifying various factors and signaling pathways related to aging and lifespan. More than 20 years have passed since molecular biological perspectives are adopted in this research field, and intracellular factors and signal pathways that control aging and lifespan have evolutionarily conserved from yeast to mammals. Furthermore, these findings have been applied to control the aging and lifespan of various model organisms by adjustment of the nutritional environment, genetic manipulation, and drug treatment using low-molecular weight compounds. Among these, drug treatment is easier than the other methods, and research into drugs that regulate aging and lifespan is consequently expected to become more active. Chronological lifespan, a definition of yeast lifespan, refers to the survival period of a cell population under nondividing conditions. Herein, low-molecular weight compounds are summarized that extend the chronological lifespan of Saccharomyces cerevisiae and Schizosaccharomyces pombe, along with their intracellular functions. The low-molecular weight compounds are also discussed that extend the lifespan of other model organisms. Compounds that have so far only been studied in yeast may soon extend lifespan in other organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
14
|
Missong H, Joshi R, Khullar N, Thareja S, Navik U, Bhatti GK, Bhatti JS. Nutrient-epigenome interactions: Implications for personalized nutrition against aging-associated diseases. J Nutr Biochem 2024; 127:109592. [PMID: 38325612 DOI: 10.1016/j.jnutbio.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Aging is a multifaceted process involving genetic and environmental interactions often resulting in epigenetic changes, potentially leading to aging-related diseases. Various strategies, like dietary interventions and calorie restrictions, have been employed to modify these epigenetic landscapes. A burgeoning field of interest focuses on the role of microbiota in human health, emphasizing system biology and computational approaches. These methods help decipher the intricate interplay between diet and gut microbiota, facilitating the creation of personalized nutrition strategies. In this review, we analysed the mechanisms related to nutritional interventions while highlighting the influence of dietary strategies, like calorie restriction and intermittent fasting, on microbial composition and function. We explore how gut microbiota affects the efficacy of interventions using tools like multi-omics data integration, network analysis, and machine learning. These tools enable us to pinpoint critical regulatory elements and generate individualized models for dietary responses. Lastly, we emphasize the need for a deeper comprehension of nutrient-epigenome interactions and the potential of personalized nutrition informed by individual genetic and epigenetic profiles. As knowledge and technology advance, dietary epigenetics stands on the cusp of reshaping our strategy against aging and related diseases.
Collapse
Affiliation(s)
- Hemi Missong
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Riya Joshi
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
15
|
Aburada N, Ito J, Inoue Y, Yamamoto T, Hayashi M, Teramoto N, Okada Y, Koshiishi Y, Shirasuna K, Iwata H. Effect of paternal aging and vitrification on mitochondrial DNA copy number and telomere length of mouse blastocysts. J Reprod Dev 2024; 70:65-71. [PMID: 38267053 PMCID: PMC11017102 DOI: 10.1262/jrd.2023-079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/31/2023] [Indexed: 01/26/2024] Open
Abstract
In this study, we examined the effects of paternal aging on the mitochondrial DNA copy number (mt-cn), telomere length (TL), and gene expression in mouse embryos. The effects of vitrification on the mt-cn and TL of the embryos derived from young and aged male parents (YF and AF, respectively) were examined. C57BL/6N male mice were used for embryo production at 13-23 and 50-55 weeks of age. Two-cell stage embryos were collected from the oviducts of superovulated female mice (8-15 weeks old) and cultured for 24 h until the 8-cell stage, followed by embryo vitrification. Fresh and vitrified-warmed embryos were incubated for 2 days until the blastocyst stage, and mt-cn and TL were investigated. The cell-free mitochondrial DNA copy number (cf-mt-cn) in the spent culture medium (SCM) of the embryos was then investigated. RNA sequencing of blastocysts revealed that metabolic pathways, including oxidative phosphorylation and mTOR pathways, were enriched in differentially expressed genes. The mt-cn and TL of AF-derived blastocysts were lower and shorter, respectively, than those of YF-derived blastocysts. Paternal aging did not affect the blastocyst rate after vitrification. Vitrification of the 8-cell stage embryos did not affect the mt-cn of the blastocysts. However, it increased the cf-mt-cn (cell-free mt-cn) in the SCM of both YF- and AF-derived embryos. Vitrification did not affect the TL of either YF- or AF-derived embryos. Thus, paternal aging affected the mt-cn and TL of the embryos, but vitrification did not affect these parameters in either age groups.
Collapse
Affiliation(s)
- Nao Aburada
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Jun Ito
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Yuki Inoue
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | | | | | - Noko Teramoto
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Yuri Okada
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | | | | | - Hisataka Iwata
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| |
Collapse
|
16
|
Wang P, Zhang H, Guo K, Liu C, Chen S, Pu B, Chen S, Feng T, Jiao H, Gao C. Rapamycin inhibits B16 melanoma cell viability invitro and invivo by inducing autophagy and inhibiting the mTOR/p70‑S6k pathway. Oncol Lett 2024; 27:140. [PMID: 38385108 PMCID: PMC10877231 DOI: 10.3892/ol.2024.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Rapamycin is an immunosuppressant that has been shown to prevent tumor growth following organ transplantation. However, its exact mode of antitumor action remains unknown. The present study used the B16-F10 (B16) murine melanoma model to explore the antitumor mechanism of rapamycin, and it was revealed that rapamycin reduced B16 cell viability in vitro and in vivo. In addition, in vitro and in vivo, the results of western blotting showed that rapamycin reduced Bcl2 expression, and enhanced the protein expression levels of cleaved caspase 3 and Bax, indicating that it can induce the apoptosis of B16 melanoma cells. Furthermore, the results of cell cycle analysis and western blotting showed that rapamycin induced B16 cell cycle arrest in the G1 phase, based on the reduction in the protein expression levels of CDK1, cyclin D1 and CDK4, as well as the increase in the percentage of cells in G1 phase. Rapamycin also significantly increased the number of autophagosomes in B16 melanoma cells, as determined by transmission electron microscopy. Furthermore, the results of RT-qPCR and western blotting showed that rapamycin upregulated the protein expression levels of microtubule-associated protein light chain 3 (LC3) and Beclin-1, while downregulating the expression of p62 in vitro and in vivo, thus indicating that rapamycin could trigger cellular autophagy. The present study revealed that rapamycin in combination with chloroquine (CQ) further increased LC3 expression compared with that in the CQ group, suggesting that rapamycin induced an increase in autophagy in B16 cells. Furthermore, the results of western blotting showed that rapamycin blocked the phosphorylation of p70 ribosomal S6 kinase (p70-S6k) and mammalian target of rapamycin (mTOR) proteins in vitro and in vivo, thus suggesting that rapamycin may exert its antitumor effect by inhibiting the phosphorylation of the mTOR/p70-S6k pathway. In conclusion, rapamycin may inhibit tumor growth by inducing cellular G1 phase arrest and apoptosis. In addition, rapamycin may exert its antitumor effects by inducing the autophagy of B16 melanoma cells in vitro and in vivo, and the mTOR/p70-S6k signaling pathway may be involved in this process.
Collapse
Affiliation(s)
- Penghui Wang
- Department of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Haifang Zhang
- Hainan Institute for Drug Control, Haikou, Hainan 570216, P.R. China
| | - Kaikai Guo
- Department of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Chun Liu
- Hainan Institute for Drug Control, Haikou, Hainan 570216, P.R. China
| | - Shimin Chen
- Department of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Baopeng Pu
- Department of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Sirun Chen
- Hainan Medical University Press, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Tong Feng
- School of Pharmacy, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Hanyi Jiao
- Department of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Chang Gao
- Department of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| |
Collapse
|
17
|
Pereira B, Correia FP, Alves IA, Costa M, Gameiro M, Martins AP, Saraiva JA. Epigenetic reprogramming as a key to reverse ageing and increase longevity. Ageing Res Rev 2024; 95:102204. [PMID: 38272265 DOI: 10.1016/j.arr.2024.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The pursuit for the fountain of youth has long been a fascination amongst scientists and humanity. Ageing is broadly characterized by a cellular decline with increased susceptibility to age-related diseases, being intimately associated with epigenetic modifications. Recently, reprogramming-induced rejuvenation strategies have begun to greatly alter longevity research not only to tackle age-related defects but also to possibly reverse the cellular ageing process. Hence, in this review, we highlight the major epigenetic changes during ageing and the state-of-art of the current emerging epigenetic reprogramming strategies leveraging on transcription factors. Notably, partial reprogramming enables the resetting of the ageing clock without erasing cellular identity. Promising chemical-based rejuvenation strategies harnessing small molecules, including DNA methyltransferase and histone deacetylase inhibitors are also discussed. Moreover, in parallel to longevity interventions, the foundations of epigenetic clocks for accurate ageing assessment and evaluation of reprogramming approaches are briefly presented. Going further, with such scientific breakthroughs, we are witnessing a rise in the longevity biotech industry aiming to extend the health span and ideally achieve human rejuvenation one day. In this context, we overview the main scenarios proposed for the future of the socio-economic and ethical challenges associated with such an emerging field. Ultimately, this review aims to inspire future research on interventions that promote healthy ageing for all.
Collapse
Affiliation(s)
- Beatriz Pereira
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Inês A Alves
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Margarida Costa
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mariana Gameiro
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana P Martins
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
18
|
Cai J, Xie D, Kong F, Zhai Z, Zhu Z, Zhao Y, Xu Y, Sun T. Effect and Mechanism of Rapamycin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. J Alzheimers Dis 2024; 99:53-84. [PMID: 38640155 DOI: 10.3233/jad-231249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Alzheimer's disease (AD), the most common form of dementia, remains long-term and challenging to diagnose. Furthermore, there is currently no medication to completely cure AD patients. Rapamycin has been clinically demonstrated to postpone the aging process in mice and improve learning and memory abilities in animal models of AD. Therefore, rapamycin has the potential to be significant in the discovery and development of drugs for AD patients. Objective The main objective of this systematic review and meta-analysis was to investigate the effects and mechanisms of rapamycin on animal models of AD by examining behavioral indicators and pathological features. Methods Six databases were searched and 4,277 articles were retrieved. In conclusion, 13 studies were included according to predefined criteria. Three authors independently judged the selected literature and methodological quality. Use of subgroup analyses to explore potential mechanistic effects of rapamycin interventions: animal models of AD, specific types of transgenic animal models, dosage, and periodicity of administration. Results The results of Morris Water Maze (MWM) behavioral test showed that escape latency was shortened by 15.60 seconds with rapamycin therapy, indicating that learning ability was enhanced in AD mice; and the number of traversed platforms was increased by 1.53 times, indicating that the improved memory ability significantly corrected the memory deficits. CONCLUSIONS Rapamycin therapy reduced age-related plaque deposition by decreasing AβPP production and down-regulating β-secretase and γ-secretase activities, furthermore increased amyloid-β clearance by promoting autophagy, as well as reduced tau hyperphosphorylation by up-regulating insulin-degrading enzyme levels.
Collapse
Affiliation(s)
- Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhenwei Zhai
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yanru Zhao
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Das JK, Banskota N, Candia J, Griswold ME, Orenduff M, de Cabo R, Corcoran DL, Das SK, De S, Huffman KM, Kraus VB, Kraus WE, Martin C, Racette SB, Redman LM, Schilling B, Belsky D, Ferrucci L. Calorie restriction modulates the transcription of genes related to stress response and longevity in human muscle: The CALERIE study. Aging Cell 2023; 22:e13963. [PMID: 37823711 PMCID: PMC10726900 DOI: 10.1111/acel.13963] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 10/13/2023] Open
Abstract
The lifespan extension induced by 40% caloric restriction (CR) in rodents is accompanied by postponement of disease, preservation of function, and increased stress resistance. Whether CR elicits the same physiological and molecular responses in humans remains mostly unexplored. In the CALERIE study, 12% CR for 2 years in healthy humans induced minor losses of muscle mass (leg lean mass) without changes of muscle strength, but mechanisms for muscle quality preservation remained unclear. We performed high-depth RNA-Seq (387-618 million paired reads) on human vastus lateralis muscle biopsies collected from the CALERIE participants at baseline, 12- and 24-month follow-up from the 90 CALERIE participants randomized to CR and "ad libitum" control. Using linear mixed effect model, we identified protein-coding genes and splicing variants whose expression was significantly changed in the CR group compared to controls, including genes related to proteostasis, circadian rhythm regulation, DNA repair, mitochondrial biogenesis, mRNA processing/splicing, FOXO3 metabolism, apoptosis, and inflammation. Changes in some of these biological pathways mediated part of the positive effect of CR on muscle quality. Differentially expressed splicing variants were associated with change in pathways shown to be affected by CR in model organisms. Two years of sustained CR in humans positively affected skeletal muscle quality, and impacted gene expression and splicing profiles of biological pathways affected by CR in model organisms, suggesting that attainable levels of CR in a lifestyle intervention can benefit muscle health in humans.
Collapse
Affiliation(s)
- Jayanta Kumar Das
- Longitudinal Studies Section, Translation Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Nirad Banskota
- Computational Biology and Genomics CoreNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Julián Candia
- Longitudinal Studies Section, Translation Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | | | - Melissa Orenduff
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Rafael de Cabo
- Translation Gerontology Branch, National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - David L. Corcoran
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Sai Krupa Das
- Energy Metabolism, Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| | - Supriyo De
- Computational Biology and Genomics CoreNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Kim Marie Huffman
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - William E. Kraus
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Corby K. Martin
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Susan B. Racette
- College of Health SolutionsArizona State UniversityPhoenixArizonaUSA
| | - Leanne M. Redman
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | | | - Daniel W. Belsky
- Department of Epidemiology & Butler Columbia Aging CenterColumbia University Mailman School of Public HealthNew York CityNew YorkUSA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translation Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| |
Collapse
|
20
|
Ohtsuka H, Otsubo Y, Shimasaki T, Yamashita A, Aiba H. ecl family genes: Factors linking starvation and lifespan extension in Schizosaccharomyces pombe. Mol Microbiol 2023; 120:645-657. [PMID: 37525511 DOI: 10.1111/mmi.15134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
In the fission yeast Schizosaccharomyces pombe, the duration of survival in the stationary phase, termed the chronological lifespan (CLS), is affected by various environmental factors and the corresponding gene activities. The ecl family genes were identified in the genomic region encoding non-coding RNA as positive regulators of CLS in S. pombe, and subsequently shown to encode relatively short proteins. Several studies revealed that ecl family genes respond to various nutritional starvation conditions via different mechanisms, and they are additionally involved in stress resistance, autophagy, sexual differentiation, and cell cycle control. Recent studies reported that Ecl family proteins strongly suppress target of rapamycin complex 1, which is a conserved eukaryotic nutrient-sensing kinase complex that also regulates longevity in a variety of organisms. In this review, we introduce the regulatory mechanisms of Ecl family proteins and discuss their emerging findings.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
21
|
Wang C, Cheng Y, Li B, Qiu X, Hu H, Zhang X, Lu Z, Zheng F. Transcriptional characteristics and functional validation of three monocyte subsets during aging. Immun Ageing 2023; 20:50. [PMID: 37759225 PMCID: PMC10523626 DOI: 10.1186/s12979-023-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Age-associated changes in immunity are inextricably linked to chronic inflammation and age-related diseases, the impact of aging on monocyte subsets is poorly understood. METHODS Flow cytometry was applied to distinguish three monocyte subsets between 120 young and 103 aged individuals. We then analyzed the expression profiles of three monocyte subsets from 9 young and 9 older donors and CD14+ monocytes from 1202 individuals between 44 and 83 years old. Flow cytometry was used to measure β-galactosidase activities, ROS levels, mitochondrial contents, mitochondrial membrane potentials (MMPs) and intracellular IL-6 levels in three monocyte subsets of young and elderly individuals, and plasma IL-6 levels were detected by electrochemiluminescence immunoassay. Mitochondrial stress and glycolytic rate of CD14+ monocytes from young and aged individuals were measured by Seahorse XFe24 Analyzer. RESULTS Compared with young individuals, the percentage of classical subset in aged persons significantly decreased, while the proportion of nonclassical subset increased. Age-related differential genes were obviously enriched in cellular senescence, ROS, oxidative phosphorylation, mitochondrial respiratory chain, IL-6 and ribosome-related pathways. Compared with young individuals, the β-galactosidase activities, ROS contents, intracellular IL-6 levels of three monocyte subsets, and plasma IL-6 levels in aged individuals were significantly elevated, while the MMPs apparently declined with age and the mitochondrial contents were only increased in intermediate and nonclassical subsets. CD14+ monocytes from elderly adults had conspicuously lower basal and spare respiratory capacity and higher basal glycolysis than those from young individuals. CONCLUSIONS During aging, monocytes exhibited senescence-associated secretory phenotype, mitochondrial dysfunction, decreased oxidative phosphorylation and increased glycolysis and the nonclassical subset displayed the clearest features of aging. Our study comprehensively investigated age-related transcriptional alterations of three monocyte subsets and identified the pivotal pathways of monocyte senescence, which may have significant implications for tactics to alleviate age-related conditions.
Collapse
Affiliation(s)
- Chen Wang
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yating Cheng
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Boyu Li
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xueping Qiu
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Hu
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaokang Zhang
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Fang Zheng
- Center for Gene Diagnosis, Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
22
|
Islam RA, Rallis C. Ribosomal Biogenesis and Heterogeneity in Development, Disease, and Aging. EPIGENOMES 2023; 7:17. [PMID: 37606454 PMCID: PMC10443367 DOI: 10.3390/epigenomes7030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
Although reported in the literature, ribosome heterogeneity is a phenomenon whose extent and implications in cell and organismal biology is not fully appreciated. This has been the case due to the lack of the appropriate techniques and approaches. Heterogeneity can arise from alternative use and differential content of protein and RNA constituents, as well as from post-transcriptional and post-translational modifications. In the few examples we have, it is apparent that ribosomal heterogeneity offers an additional level and potential for gene expression regulation and might be a way towards tuning metabolism, stress, and growth programs to external and internal stimuli and needs. Here, we introduce ribosome biogenesis and discuss ribosomal heterogeneity in various reported occasions. We conclude that a systematic approach in multiple organisms will be needed to delineate this biological phenomenon and its contributions to growth, aging, and disease. Finally, we discuss ribosome mutations and their roles in disease.
Collapse
Affiliation(s)
- Rowshan Ara Islam
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK;
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Charalampos Rallis
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK;
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
23
|
Napolitano G, Fasciolo G, Muscari Tomajoli MT, Venditti P. Changes in the Mitochondria in the Aging Process-Can α-Tocopherol Affect Them? Int J Mol Sci 2023; 24:12453. [PMID: 37569829 PMCID: PMC10419829 DOI: 10.3390/ijms241512453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Aerobic organisms use molecular oxygen in several reactions, including those in which the oxidation of substrate molecules is coupled to oxygen reduction to produce large amounts of metabolic energy. The utilization of oxygen is associated with the production of ROS, which can damage biological macromolecules but also act as signaling molecules, regulating numerous cellular processes. Mitochondria are the cellular sites where most of the metabolic energy is produced and perform numerous physiological functions by acting as regulatory hubs of cellular metabolism. They retain the remnants of their bacterial ancestors, including an independent genome that encodes part of their protein equipment; they have an accurate quality control system; and control of cellular functions also depends on communication with the nucleus. During aging, mitochondria can undergo dysfunctions, some of which are mediated by ROS. In this review, after a description of how aging affects the mitochondrial quality and quality control system and the involvement of mitochondria in inflammation, we report information on how vitamin E, the main fat-soluble antioxidant, can protect mitochondria from age-related changes. The information in this regard is scarce and limited to some tissues and some aspects of mitochondrial alterations in aging. Improving knowledge of the effects of vitamin E on aging is essential to defining an optimal strategy for healthy aging.
Collapse
Affiliation(s)
- Gaetana Napolitano
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Gianluca Fasciolo
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| | - Maria Teresa Muscari Tomajoli
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Paola Venditti
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| |
Collapse
|
24
|
Liu S, Chen M, Wang Y, Lei Y, Huang T, Zhang Y, Lam SM, Li H, Qi S, Geng J, Lu K. The ER calcium channel Csg2 integrates sphingolipid metabolism with autophagy. Nat Commun 2023; 14:3725. [PMID: 37349354 PMCID: PMC10287731 DOI: 10.1038/s41467-023-39482-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Sphingolipids are ubiquitous components of membranes and function as bioactive lipid signaling molecules. Here, through genetic screening and lipidomics analyses, we find that the endoplasmic reticulum (ER) calcium channel Csg2 integrates sphingolipid metabolism with autophagy by regulating ER calcium homeostasis in the yeast Saccharomyces cerevisiae. Csg2 functions as a calcium release channel and maintains calcium homeostasis in the ER, which enables normal functioning of the essential sphingolipid synthase Aur1. Under starvation conditions, deletion of Csg2 causes increases in calcium levels in the ER and then disturbs Aur1 stability, leading to accumulation of the bioactive sphingolipid phytosphingosine, which specifically and completely blocks autophagy and induces loss of starvation resistance in cells. Our findings indicate that calcium homeostasis in the ER mediated by the channel Csg2 translates sphingolipid metabolism into autophagy regulation, further supporting the role of the ER as a signaling hub for calcium homeostasis, sphingolipid metabolism and autophagy.
Collapse
Affiliation(s)
- Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mutian Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Yichang Wang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqing Lei
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yabin Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- LipidALL Technologies Company Limited, Changzhou, 213022, China
| | - Huihui Li
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China.
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Lamas-Maceiras M, Vizoso-Vázquez Á, Barreiro-Alonso A, Cámara-Quílez M, Cerdán ME. Thanksgiving to Yeast, the HMGB Proteins History from Yeast to Cancer. Microorganisms 2023; 11:microorganisms11040993. [PMID: 37110415 PMCID: PMC10142021 DOI: 10.3390/microorganisms11040993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Yeasts have been a part of human life since ancient times in the fermentation of many natural products used for food. In addition, in the 20th century, they became powerful tools to elucidate the functions of eukaryotic cells as soon as the techniques of molecular biology developed. Our molecular understandings of metabolism, cellular transport, DNA repair, gene expression and regulation, and the cell division cycle have all been obtained through biochemistry and genetic analysis using different yeasts. In this review, we summarize the role that yeasts have had in biological discoveries, the use of yeasts as biological tools, as well as past and on-going research projects on HMGB proteins along the way from yeast to cancer.
Collapse
Affiliation(s)
- Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - María Cámara-Quílez
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - María Esperanza Cerdán
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
26
|
Abstract
The inflammaging concept was introduced in 2000 by Prof. Franceschi. This was an evolutionary or rather a revolutionary conceptualization of the immune changes in response to a lifelong stress. This conceptualization permitted to consider the lifelong proinflammatory process as an adaptation which could eventually lead to either beneficial or detrimental consequences. This dichotomy is influenced by both the genetics and the environment. Depending on which way prevails in an individual, the outcome may be healthy longevity or pathological aging burdened with aging-related diseases. The concept of inflammaging has also revealed the complex, systemic nature of aging. Thus, this conceptualization opens the way to consider age-related processes in their complexity, meaning that not only the process but also all counter-processes should be considered. It has also opened the way to add new concepts to the original one, leading to better understanding of the nature of inflammaging and of aging itself. Finally, it showed the way towards potential multimodal interventions involving a holistic approach to optimize the aging process towards a healthy longevity.
Collapse
|
27
|
Bleve A, Motta F, Durante B, Pandolfo C, Selmi C, Sica A. Immunosenescence, Inflammaging, and Frailty: Role of Myeloid Cells in Age-Related Diseases. Clin Rev Allergy Immunol 2023; 64:123-144. [PMID: 35031957 PMCID: PMC8760106 DOI: 10.1007/s12016-021-08909-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
The immune system is the central regulator of tissue homeostasis, ensuring tissue regeneration and protection against both pathogens and the neoformation of cancer cells. Its proper functioning requires homeostatic properties, which are maintained by an adequate balance of myeloid and lymphoid responses. Aging progressively undermines this ability and compromises the correct activation of immune responses, as well as the resolution of the inflammatory response. A subclinical syndrome of "homeostatic frailty" appears as a distinctive trait of the elderly, which predisposes to immune debilitation and chronic low-grade inflammation (inflammaging), causing the uncontrolled development of chronic and degenerative diseases. The innate immune compartment, in particular, undergoes to a sequela of age-dependent functional alterations, encompassing steps of myeloid progenitor differentiation and altered responses to endogenous and exogenous threats. Here, we will review the age-dependent evolution of myeloid populations, as well as their impact on frailty and diseases of the elderly.
Collapse
Affiliation(s)
- Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy
| | - Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center- IRCCS, via Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
| | - Barbara Durante
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy
| | - Chiara Pandolfo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center- IRCCS, via Manzoni 56, Rozzano, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy.
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
28
|
Piper MDW, Zanco B, Sgrò CM, Adler MI, Mirth CK, Bonduriansky R. Dietary restriction and lifespan: adaptive reallocation or somatic sacrifice? FEBS J 2023; 290:1725-1734. [PMID: 35466532 PMCID: PMC10952493 DOI: 10.1111/febs.16463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022]
Abstract
Reducing overall food intake, or lowering the proportion of protein relative to other macronutrients, can extend the lifespan of diverse organisms. A number of mechanistic theories have been developed to explain this phenomenon, mostly assuming that the molecules connecting diet to lifespan are evolutionarily conserved. A recent study using Drosophila melanogaster females has pinpointed a single essential micronutrient that can explain how lifespan is changed by dietary restriction. Here, we propose a likely mechanism for this observation, which involves a trade-off between lifespan and reproduction, but in a manner that is conditional on the dietary supply of an essential micronutrient - a sterol. Importantly, these observations argue against previous evolutionary theories that rely on constitutive resource reallocation or damage directly inflicted by reproduction. Instead, they are compatible with a model in which the inverse relationship between lifespan and food level is caused by the consumer suffering from varying degrees of malnutrition when maintained on lab food. The data also indicate that animals on different lab foods may suffer from different nutritional imbalances and that the mechanisms by which dietary restriction benefits the lifespan of different species may vary. This means that translating the mechanistic findings from lab animals to humans will not be simple and should be interpreted in light of the range of challenges that have shaped each organism's lifespan in the wild and the composition of the natural diets upon which they would feed.
Collapse
Affiliation(s)
| | - Brooke Zanco
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | | | - Christen K. Mirth
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Russell Bonduriansky
- School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia
| |
Collapse
|
29
|
Jung S, Arcos Hodar J, Del Sol A. Measuring biological age using a functionally interpretable multi-tissue RNA clock. Aging Cell 2023; 22:e13799. [PMID: 36929664 DOI: 10.1111/acel.13799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 03/18/2023] Open
Abstract
The quantification of the biological age of cells yields great promises for accelerating the discovery of novel rejuvenation strategies. Here, we present MultiTIMER, the first multi-tissue aging clock that measures the biological, rather than chronological, age of cells from their transcriptional profiles by evaluating key cellular processes. We applied MultiTIMER to more than 70,000 transcriptional profiles and demonstrate that it accurately responds to cellular stressors and known interventions while informing about dysregulated cellular functions.
Collapse
Affiliation(s)
- Sascha Jung
- Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain
| | - Javier Arcos Hodar
- Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain
| | - Antonio Del Sol
- Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain.,Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
30
|
Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ, Robbins PD. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J 2023; 290:1362-1383. [PMID: 35015337 DOI: 10.1111/febs.16350] [Citation(s) in RCA: 200] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
The concept of geroscience is that since ageing is the greatest risk factor for many diseases and conditions, targeting the ageing process itself will have the greatest impact on human health. Of the hallmarks of ageing, cellular senescence has emerged as a druggable therapeutic target for extending healthspan in model organisms. Cellular senescence is a cell state of irreversible proliferative arrest driven by different types of stress, including oncogene-induced stress. Many senescent cells (SnCs) develop a senescent-associated secretory phenotype (SASP) comprising pro-inflammatory cytokines, chemokines, proteases, bioactive lipids, inhibitory molecules, extracellular vesicles, metabolites, lipids and other factors, able to promote chronic inflammation and tissue dysfunction. SnCs up-regulate senescent cell anti-apoptotic pathways (SCAPs) that prevent them from dying despite the accumulation of damage to DNA and other organelles. These SCAPs and other pathways altered in SnCs represent therapeutic targets for the development of senotherapeutic drugs that induce selective cell death of SnCs, specifically termed senolytics or suppress markers of senescence, in particular the SASP, termed senomorphics. Here, we review the current state of the development of senolytics and senomorphics for the treatment of age-related diseases and disorders and extension of healthy longevity. In addition, the challenges of documenting senolytic and senomorphic activity in pre-clinical models and the current state of the clinical application of the different senotherapeutics will be discussed.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Louise E Pitcher
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Vaishali Prahalad
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
31
|
Compound combinations targeting longevity: Challenges and perspectives. Ageing Res Rev 2023; 85:101851. [PMID: 36642188 DOI: 10.1016/j.arr.2023.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Aging is one of the world's greatest concerns, requiring urgent, effective, large-scale interventions to decrease the number of late-life chronic diseases and improve human healthspan. Anti-aging drug therapy is one of the most promising strategies to combat the effects of aging. However, most geroprotective compounds are known to successfully affect only a few aging-related targets. Given this, there is a great biological rationale for the use of combinations of anti-aging interventions. In this review, we characterize the various types of compound combinations used to modulate lifespan, discuss the existing evidence on their role in life extension, and present some key points about current challenges and future prospects for the development of combination drug anti-aging therapy.
Collapse
|
32
|
Marino N, Putignano G, Cappilli S, Chersoni E, Santuccione A, Calabrese G, Bischof E, Vanhaelen Q, Zhavoronkov A, Scarano B, Mazzotta AD, Santus E. Towards AI-driven longevity research: An overview. FRONTIERS IN AGING 2023; 4:1057204. [PMID: 36936271 PMCID: PMC10018490 DOI: 10.3389/fragi.2023.1057204] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
While in the past technology has mostly been utilized to store information about the structural configuration of proteins and molecules for research and medical purposes, Artificial Intelligence is nowadays able to learn from the existing data how to predict and model properties and interactions, revealing important knowledge about complex biological processes, such as aging. Modern technologies, moreover, can rely on a broader set of information, including those derived from the next-generation sequencing (e.g., proteomics, lipidomics, and other omics), to understand the interactions between human body and the external environment. This is especially relevant as external factors have been shown to have a key role in aging. As the field of computational systems biology keeps improving and new biomarkers of aging are being developed, artificial intelligence promises to become a major ally of aging research.
Collapse
Affiliation(s)
- Nicola Marino
- Women’s Brain Project (WBP), Gunterhausen, Switzerland
| | | | - Simone Cappilli
- Dermatology, Catholic University of the Sacred Heart, Rome, Italy
- UOC of Dermatology, Department of Abdominal and Endocrine Metabolic Medical and Surgical Sciences, A. Gemelli University Hospital Foundation-IRCCS, Rome, Italy
| | - Emmanuele Chersoni
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong, China
| | | | - Giuliana Calabrese
- Department of Translational Medicine and Surgery, CatholicUniversity of the Sacred Heart, Rome, Italy
| | - Evelyne Bischof
- Insilico Medicine Hong Kong Ltd., New Territories, Hong Kong SAR, China
| | - Quentin Vanhaelen
- Insilico Medicine Hong Kong Ltd., New Territories, Hong Kong SAR, China
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong Ltd., New Territories, Hong Kong SAR, China
| | - Bryan Scarano
- Department of Translational Medicine and Surgery, CatholicUniversity of the Sacred Heart, Rome, Italy
| | - Alessandro D. Mazzotta
- Department of Digestive, Oncological and Metabolic Surgery, Institute Mutualiste Montsouris, Paris, France
- Biorobotics Institute, Scuola Superiore Sant’anna, Pisa, Italy
| | | |
Collapse
|
33
|
Alao JP, Legon L, Dabrowska A, Tricolici AM, Kumar J, Rallis C. Interplays of AMPK and TOR in Autophagy Regulation in Yeast. Cells 2023; 12:cells12040519. [PMID: 36831186 PMCID: PMC9953913 DOI: 10.3390/cells12040519] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Cells survey their environment and need to balance growth and anabolism with stress programmes and catabolism towards maximum cellular bioenergetics economy and survival. Nutrient-responsive pathways, such as the mechanistic target of rapamycin (mTOR) interact and cross-talk, continuously, with stress-responsive hubs such as the AMP-activated protein kinase (AMPK) to regulate fundamental cellular processes such as transcription, protein translation, lipid and carbohydrate homeostasis. Especially in nutrient stresses or deprivations, cells tune their metabolism accordingly and, crucially, recycle materials through autophagy mechanisms. It has now become apparent that autophagy is pivotal in lifespan, health and cell survival as it is a gatekeeper of clearing damaged macromolecules and organelles and serving as quality assurance mechanism within cells. Autophagy is hard-wired with energy and nutrient levels as well as with damage-response, and yeasts have been instrumental in elucidating such connectivities. In this review, we briefly outline cross-talks and feedback loops that link growth and stress, mainly, in the fission yeast Schizosaccharomyces pombe, a favourite model in cell and molecular biology.
Collapse
|
34
|
He Y, Su Y, Duan C, Wang S, He W, Zhang Y, An X, He M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res Rev 2023; 84:101833. [PMID: 36565959 DOI: 10.1016/j.arr.2022.101833] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
With the aging of global population, the incidence of nonalcoholic fatty liver disease (NAFLD) has surged in recent decades. NAFLD is a multifactorial disease that follows a progressive course, ranging from simple fatty liver, nonalcoholic steatohepatitis (NASH) to liver cirrhosis and hepatocellular carcinoma (HCC). It is well established that aging induces pathological changes in liver and potentiates the occurrence and progression of NAFLD, HCC and other age-related liver diseases. Studies of senescent cells also indicate a pivotal engagement in the development of NAFLD via diverse mechanisms. Moreover, nicotinamide adenine dinucleotide (NAD+), silence information regulator protein family (sirtuins), and mechanistic target of rapamycin (mTOR) are three vital and broadly studied targets involved in aging process and NAFLD. Nevertheless, the crucial role of these aging-associated factors in aging-related NAFLD remains underestimated. Here, we reviewed the current research on the roles of aging, cellular senescence and three aging-related factors in the evolution of NAFLD to HCC, aiming at inspiring promising therapeutic targets for aging-related NAFLD and its progression.
Collapse
Affiliation(s)
- Yongyuan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghong Su
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Duan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Basic Medicine, Kunming Medical University, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
35
|
Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, Song YH, Li Y. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther 2023; 8:15. [PMID: 36617563 PMCID: PMC9826790 DOI: 10.1038/s41392-022-01285-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
The ribosome is a multi-unit complex that translates mRNA into protein. Ribosome biogenesis is the process that generates ribosomes and plays an essential role in cell proliferation, differentiation, apoptosis, development, and transformation. The mTORC1, Myc, and noncoding RNA signaling pathways are the primary mediators that work jointly with RNA polymerases and ribosome proteins to control ribosome biogenesis and protein synthesis. Activation of mTORC1 is required for normal fetal growth and development and tissue regeneration after birth. Myc is implicated in cancer development by enhancing RNA Pol II activity, leading to uncontrolled cancer cell growth. The deregulation of noncoding RNAs such as microRNAs, long noncoding RNAs, and circular RNAs is involved in developing blood, neurodegenerative diseases, and atherosclerosis. We review the similarities and differences between eukaryotic and bacterial ribosomes and the molecular mechanism of ribosome-targeting antibiotics and bacterial resistance. We also review the most recent findings of ribosome dysfunction in COVID-19 and other conditions and discuss the consequences of ribosome frameshifting, ribosome-stalling, and ribosome-collision. We summarize the role of ribosome biogenesis in the development of various diseases. Furthermore, we review the current clinical trials, prospective vaccines for COVID-19, and therapies targeting ribosome biogenesis in cancer, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Lijuan Jiao
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yuzhe Liu
- grid.452829.00000000417660726Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin 130000 P. R. China
| | - Xi-Yong Yu
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511436 P. R. China
| | - Xiangbin Pan
- grid.506261.60000 0001 0706 7839Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China ,Key Laboratory of Cardiovascular Appratus Innovation, Beijing, 100037 P. R. China
| | - Yu Zhang
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Junchu Tu
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Yangxin Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
36
|
Regan JC, Lu YX, Ureña E, Meilenbrock RL, Catterson JH, Kißler D, Fröhlich J, Funk E, Partridge L. Sexual identity of enterocytes regulates autophagy to determine intestinal health, lifespan and responses to rapamycin. NATURE AGING 2022; 2:1145-1158. [PMID: 37118538 PMCID: PMC10154239 DOI: 10.1038/s43587-022-00308-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/04/2022] [Indexed: 04/30/2023]
Abstract
Pharmacological attenuation of mTOR presents a promising route for delay of age-related disease. Here we show that treatment of Drosophila with the mTOR inhibitor rapamycin extends lifespan in females, but not in males. Female-specific, age-related gut pathology is markedly slowed by rapamycin treatment, mediated by increased autophagy. Treatment increases enterocyte autophagy in females, via the H3/H4 histone-Bchs axis, whereas males show high basal levels of enterocyte autophagy that are not increased by rapamycin feeding. Enterocyte sexual identity, determined by transformerFemale expression, dictates sexually dimorphic cell size, H3/H4-Bchs expression, basal rates of autophagy, fecundity, intestinal homeostasis and lifespan extension in response to rapamycin. Dimorphism in autophagy is conserved in mice, where intestine, brown adipose tissue and muscle exhibit sex differences in autophagy and response to rapamycin. This study highlights tissue sex as a determining factor in the regulation of metabolic processes by mTOR and the efficacy of mTOR-targeted, anti-aging drug treatments.
Collapse
Affiliation(s)
- Jennifer C Regan
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK.
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK.
| | - Yu-Xuan Lu
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Enric Ureña
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | - James H Catterson
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Disna Kißler
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jenny Fröhlich
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Emilie Funk
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK.
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| |
Collapse
|
37
|
Yang Q, Hu J, Wang M, Guo N, Yang L, Xi Q, Zhu L, Jin L. Rapamycin improves the quality and developmental competence of in vitro matured oocytes in aged mice and humans. Aging (Albany NY) 2022; 14:9200-9209. [PMID: 36441531 PMCID: PMC9740364 DOI: 10.18632/aging.204401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Women over age 35 suffer from the inadequate number and poor quality of oocytes during assisted reproductive treatment, and making full use of the oocytes by in vitro maturation (IVM) is crucial. Rapamycin could improve the developmental competences of the post-maturation oocytes during in vitro aging, yet its effects on the IVM process of oocytes from an aged population were not clear. In this study, the immature oocytes from aged mice or older women underwent IVM with or without 10 nM rapamycin, followed by parthenogenetic activation or insemination and embryo culture. The developmental competence and quality of IVM oocytes in both groups were compared. The results showed that in aged mice, the maturation rate, activation rate, and cleavage rate of IVM oocytes were significantly elevated in the rapamycin group. Additionally, oocytes cultured with rapamycin presented decreased ROS levels, reduced chromosome aberration, and attenuated levels of γ-H2AX. During IVM of oocytes from older women, the GVBD rate, 24 h maturation rate, and 48 h maturation rate were increased in the rapamycin group, compared with those in the control group, although without significant differences. After intracytoplasmic sperm injection (ICSI) and further culture of human oocytes, the high-quality embryo rate in the rapamycin group was significantly elevated. Overall, rapamycin improved IVM outcomes of oocytes from aged mice and older women. The specific mechanism of the positive effects of rapamycin on IVM outcomes might be reducing ROS levels, mitigating DNA damage, and promoting developmental potential.
Collapse
Affiliation(s)
- Qiyu Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingsong Xi
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Wang Z, Cui Y, Wen L, Yu H, Feng J, Yuan W, He X. Dietary Restriction against Parkinson's Disease: What We Know So Far. Nutrients 2022; 14:nu14194108. [PMID: 36235760 PMCID: PMC9571011 DOI: 10.3390/nu14194108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary restriction (DR) is defined as a moderate reduction in food intake while avoiding malnutrition. The beneficial effects of DR are being increasingly acknowledged in aging and in a series of age-related neurodegenerative disorders, for example, Parkinson's disease (PD). To date, the pathogenesis of PD remains elusive and there is no cure for it in spite of intensive research over decades. In this review, we summarize the current knowledge on the efficacy of DR on PD, focusing on the underlying mechanisms involving general metabolism, neuroendocrinolgy, neuroinflammation, gut microbiome, and so on. We anticipate that this review will provide future perspectives for PD prevention and treatment.
Collapse
Affiliation(s)
- Zhonglei Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang 110001, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| |
Collapse
|
39
|
Ogienko AA, Omelina ES, Bylino OV, Batin MA, Georgiev PG, Pindyurin AV. Drosophila as a Model Organism to Study Basic Mechanisms of Longevity. Int J Mol Sci 2022; 23:11244. [PMID: 36232546 PMCID: PMC9569508 DOI: 10.3390/ijms231911244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The spatio-temporal regulation of gene expression determines the fate and function of various cells and tissues and, as a consequence, the correct development and functioning of complex organisms. Certain mechanisms of gene activity regulation provide adequate cell responses to changes in environmental factors. Aside from gene expression disorders that lead to various pathologies, alterations of expression of particular genes were shown to significantly decrease or increase the lifespan in a wide range of organisms from yeast to human. Drosophila fruit fly is an ideal model system to explore mechanisms of longevity and aging due to low cost, easy handling and maintenance, large number of progeny per adult, short life cycle and lifespan, relatively low number of paralogous genes, high evolutionary conservation of epigenetic mechanisms and signalling pathways, and availability of a wide range of tools to modulate gene expression in vivo. Here, we focus on the organization of the evolutionarily conserved signaling pathways whose components significantly influence the aging process and on the interconnections of these pathways with gene expression regulation.
Collapse
Affiliation(s)
- Anna A. Ogienko
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Evgeniya S. Omelina
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Laboratory of Biotechnology, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Mikhail A. Batin
- Open Longevity, 15260 Ventura Blvd., Sherman Oaks, Los Angeles, CA 91403, USA
| | - Pavel G. Georgiev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Alexey V. Pindyurin
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
40
|
New Trends in Aging Drug Discovery. Biomedicines 2022; 10:biomedicines10082006. [PMID: 36009552 PMCID: PMC9405986 DOI: 10.3390/biomedicines10082006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is considered the main risk factor for many chronic diseases that frequently appear at advanced ages. However, the inevitability of this process is being questioned by recent research that suggests that senescent cells have specific features that differentiate them from younger cells and that removal of these cells ameliorates senescent phenotype and associated diseases. This opens the door to the design of tailored therapeutic interventions aimed at reducing and delaying the impact of senescence in life, that is, extending healthspan and treating aging as another chronic disease. Although these ideas are still far from reaching the bedside, it is conceivable that they will revolutionize the way we understand aging in the next decades. In this review, we analyze the main and well-validated cellular pathways and targets related to senescence as well as their implication in aging-associated diseases. In addition, the most relevant small molecules with senotherapeutic potential, with a special emphasis on their mechanism of action, ongoing clinical trials, and potential limitations, are discussed. Finally, a brief overview of alternative strategies that go beyond the small molecule field, together with our perspectives for the future of the field, is provided.
Collapse
|
41
|
Ozaki M, Le TD, Inoue YH. Downregulating Mitochondrial DNA Polymerase γ in the Muscle Stimulated Autophagy, Apoptosis, and Muscle Aging-Related Phenotypes in Drosophila Adults. Biomolecules 2022; 12:biom12081105. [PMID: 36008999 PMCID: PMC9405705 DOI: 10.3390/biom12081105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species, generated as by-products of mitochondrial electron transport, can induce damage to mitochondrial DNA (mtDNA) and proteins. Here, we investigated whether the moderate accumulation of mtDNA damage in adult muscles resulted in accelerated aging-related phenotypes in Drosophila. DNA polymerase γ (Polγ) is the sole mitochondrial DNA polymerase. The muscle-specific silencing of the genes encoding the polymerase subunits resulted in the partial accumulation of mtDNA with oxidative damage and a reduction in the mtDNA copy number. This subsequently resulted in the production of abnormal mitochondria with reduced membrane potential and, consequently, a partially reduced ATP quantity in the adult muscle. Immunostaining indicated a moderate increase in autophagy and mitophagy in adults with RNA interference of Polγ (PolγRNAi) muscle cells with abnormal mitochondria. In adult muscles showing continuous silencing of Polγ, malformation of both myofibrils and mitochondria was frequently observed. This was associated with the partially enhanced activation of pro-apoptotic caspases in the muscle. Adults with muscle-specific PolγRNAi exhibited a shortened lifespan, accelerated age-dependent impairment of locomotor activity, and disturbed circadian rhythms. Our findings in this Drosophila model contribute to understanding how the accumulation of mtDNA damage results in impaired mitochondrial activity and how this contributes to muscle aging.
Collapse
|
42
|
Zhang L, Pitcher LE, Yousefzadeh MJ, Niedernhofer LJ, Robbins PD, Zhu Y. Cellular senescence: a key therapeutic target in aging and diseases. J Clin Invest 2022; 132:e158450. [PMID: 35912854 PMCID: PMC9337830 DOI: 10.1172/jci158450] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is a hallmark of aging defined by stable exit from the cell cycle in response to cellular damage and stress. Senescent cells (SnCs) can develop a characteristic pathogenic senescence-associated secretory phenotype (SASP) that drives secondary senescence and disrupts tissue homeostasis, resulting in loss of tissue repair and regeneration. The use of transgenic mouse models in which SnCs can be genetically ablated has established a key role for SnCs in driving aging and age-related disease. Importantly, senotherapeutics have been developed to pharmacologically eliminate SnCs, termed senolytics, or suppress the SASP and other markers of senescence, termed senomorphics. Based on extensive preclinical studies as well as small clinical trials demonstrating the benefits of senotherapeutics, multiple clinical trials are under way. This Review discusses the role of SnCs in aging and age-related diseases, strategies to target SnCs, approaches to discover and develop senotherapeutics, and preclinical and clinical advances of senolytics.
Collapse
Affiliation(s)
- Lei Zhang
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Louise E. Pitcher
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthew J. Yousefzadeh
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, and
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
43
|
Sorrenti V, Benedetti F, Buriani A, Fortinguerra S, Caudullo G, Davinelli S, Zella D, Scapagnini G. Immunomodulatory and Antiaging Mechanisms of Resveratrol, Rapamycin, and Metformin: Focus on mTOR and AMPK Signaling Networks. Pharmaceuticals (Basel) 2022; 15:ph15080912. [PMID: 35893737 PMCID: PMC9394378 DOI: 10.3390/ph15080912] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Aging results from the progressive dysregulation of several molecular pathways and mTOR and AMPK signaling have been suggested to play a role in the complex changes in key biological networks involved in cellular senescence. Moreover, multiple factors, including poor nutritional balance, drive immunosenescence progression, one of the meaningful aspects of aging. Unsurprisingly, nutraceutical and pharmacological interventions could help maintain an optimal biological response by providing essential bioactive micronutrients required for the development, maintenance, and the expression of the immune response at all stages of life. In this regard, many studies have provided evidence of potential antiaging properties of resveratrol, as well as rapamycin and metformin. Indeed, in vitro and in vivo models have demonstrated for these molecules a number of positive effects associated with healthy aging. The current review focuses on the mechanisms of action of these three important compounds and their suggested use for the clinical treatment of immunosenescence and aging.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Egidio Meneghetti, 2, 35131 Padova, Italy
- Bendessere® Study Center, Via Prima Strada 23/3, 35129 Padova, Italy;
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
- Correspondence: (V.S.); (D.Z.); (G.S.)
| | - Francesca Benedetti
- Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (A.B.)
| | - Alessandro Buriani
- Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (A.B.)
| | | | - Giada Caudullo
- Bendessere® Study Center, Via Prima Strada 23/3, 35129 Padova, Italy;
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Davide Zella
- Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (A.B.)
- Correspondence: (V.S.); (D.Z.); (G.S.)
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
- Correspondence: (V.S.); (D.Z.); (G.S.)
| |
Collapse
|
44
|
Xiao N, Wang J, Wang T, Xiong X, Zhou J, Su X, Peng J, Yang C, Li X, Lin G, Lu G, Gong F, Cheng L. Metformin abrogates pathological TNF-α-producing B cells through mTOR-dependent metabolic reprogramming in polycystic ovary syndrome. eLife 2022; 11:74713. [PMID: 35748536 PMCID: PMC9270024 DOI: 10.7554/elife.74713] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
B cells contribute to the pathogenesis of polycystic ovary syndrome (PCOS). Clinically, metformin is used to treat PCOS, but it is unclear whether metformin exerts its therapeutic effect by regulating B cells. Here, we showed that the expression level of tumor necrosis factor-alpha (TNF-α) in peripheral blood B cells from PCOS patients was increased. Metformin used in vitro and in vivo was able to reduce the production of TNF-α in B cells from PCOS patients. Administration of metformin improved mouse PCOS phenotypes induced by dehydroepiandrosterone (DHEA) and also inhibited TNF-α expression in splenic B cells. Furthermore, metformin induced metabolic reprogramming of B cells in PCOS patients, including the alteration in mitochondrial morphology, the decrease in mitochondrial membrane potential, Reactive Oxygen Species (ROS) production and glucose uptake. In DHEA-induced mouse PCOS model, metformin altered metabolic intermediates in splenic B cells. Moreover, the inhibition of TNF-α expression and metabolic reprogramming in B cells of PCOS patients and mouse model by metformin were associated with decreased mTOR phosphorylation. Together, TNF-α-producing B cells are involved in the pathogenesis of PCOS, and metformin inhibits mTOR phosphorylation and affects metabolic reprogramming, thereby inhibiting TNF-α expression in B cells, which may be a new mechanism of metformin in the treatment of PCOS.
Collapse
Affiliation(s)
- Na Xiao
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Jie Wang
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Ting Wang
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Xingliang Xiong
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Junyi Zhou
- Hunan Normal University, Changsha, China
| | - Xian Su
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Jing Peng
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Chao Yang
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Xiaofeng Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Guangxiu Lu
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| |
Collapse
|
45
|
Khonsari F, Heydari M, Sharifzadeh M, Valizadeh H, Dinarvand R, Atyabi F. Transferrin decorated-nanostructured lipid carriers (NLCs) are a promising delivery system for rapamycin in Alzheimer's disease: An in vivo study. BIOMATERIALS ADVANCES 2022; 137:212827. [PMID: 35929260 DOI: 10.1016/j.bioadv.2022.212827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by progressive cognitive impairment and memory loss. The mammalian target of rapamycin (mTOR) signaling pathway could regulate learning and memory. The effect of rapamycin (Rapa) on mTOR activity could slow or prevent the progression of AD by affecting various essential cellular processes. Previously, we prepared transferrin (Tf) decorated-nanostructured lipid carriers (NLCs) for rapamycin (150 ± 9 nm) to protect the drug from chemical and enzymatic degradation and for brain targeted delivery of rapamycin. Herein, the effect of Tf-NLCs compared to untargeted anionic-NLCs and free rapamycin, were studied in amyloid beta (Aβ) induced rat model of AD. Behavioral test revealed that the Rapa Tf-NLCs were able to significantly improve the impaired spatial memory induced by Aβ. Histopathological studies of hippocampus also showed neural survival in Rapa Tf-NLCs treated group. The immunosuppressive, and delayed wound healing adverse effects in the rapamycin solution treated group were abolished by incorporating the drug into NLCs. The Aβ induced oxidative stress was also reduced by Rapa Tf-NLCs. Molecular studies on the level of Aβ, autophagy (LC3) and apoptotic (caspase-3) markers, and mTOR activity revealed that the Rapa Tf-NLCs decreased the Aβ level and suppressed the toxic effects of Aβ plaques by modulating the mTOR activity and autophagy, and decreasing the apoptosis level. As a conclusion, the designed Tf-NLCs could be an appropriate and a safe brain delivery system for rapamycin and make this drug more efficient in AD for improving memory and neuroprotection.
Collapse
Affiliation(s)
- Fatemeh Khonsari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hadi Valizadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; School of Pharmacy, De Mont Fort University, Leicester, UK
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Nutrient-Response Pathways in Healthspan and Lifespan Regulation. Cells 2022; 11:cells11091568. [PMID: 35563873 PMCID: PMC9102925 DOI: 10.3390/cells11091568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular, small invertebrate and vertebrate models are a driving force in biogerontology studies. Using various models, such as yeasts, appropriate tissue culture cells, Drosophila, the nematode Caenorhabditis elegans and the mouse, has tremendously increased our knowledge around the relationship between diet, nutrient-response signaling pathways and lifespan regulation. In recent years, combinatorial drug treatments combined with mutagenesis, high-throughput screens, as well as multi-omics approaches, have provided unprecedented insights in cellular metabolism, development, differentiation, and aging. Scientists are, therefore, moving towards characterizing the fine architecture and cross-talks of growth and stress pathways towards identifying possible interventions that could lead to healthy aging and the amelioration of age-related diseases in humans. In this short review, we briefly examine recently uncovered knowledge around nutrient-response pathways, such as the Insulin Growth Factor (IGF) and the mechanistic Target of Rapamycin signaling pathways, as well as specific GWAS and some EWAS studies on lifespan and age-related disease that have enhanced our current understanding within the aging and biogerontology fields. We discuss what is learned from the rich and diverse generated data, as well as challenges and next frontiers in these scientific disciplines.
Collapse
|
47
|
Mosevitsky MI. Progerin and Its Role in Accelerated and Natural Aging. Mol Biol 2022. [DOI: 10.1134/s0026893322020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Odoh CK, Guo X, Arnone JT, Wang X, Zhao ZK. The role of NAD and NAD precursors on longevity and lifespan modulation in the budding yeast, Saccharomyces cerevisiae. Biogerontology 2022; 23:169-199. [PMID: 35260986 PMCID: PMC8904166 DOI: 10.1007/s10522-022-09958-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
Molecular causes of aging and longevity interventions have witnessed an upsurge in the last decade. The resurgent interests in the application of small molecules as potential geroprotectors and/or pharmacogenomics point to nicotinamide adenine dinucleotide (NAD) and its precursors, nicotinamide riboside, nicotinamide mononucleotide, nicotinamide, and nicotinic acid as potentially intriguing molecules. Upon supplementation, these compounds have shown to ameliorate aging related conditions and possibly prevent death in model organisms. Besides being a molecule essential in all living cells, our understanding of the mechanism of NAD metabolism and its regulation remain incomplete owing to its omnipresent nature. Here we discuss recent advances and techniques in the study of chronological lifespan (CLS) and replicative lifespan (RLS) in the model unicellular organism Saccharomyces cerevisiae. We then follow with the mechanism and biology of NAD precursors and their roles in aging and longevity. Finally, we review potential biotechnological applications through engineering of microbial lifespan, and laid perspective on the promising candidature of alternative redox compounds for extending lifespan.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaojia Guo
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - James T Arnone
- Department of Biology, William Paterson University, Wayne, NJ, 07470, USA
| | - Xueying Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
| |
Collapse
|
49
|
Wingler A, Henriques R. Sugars and the speed of life-Metabolic signals that determine plant growth, development and death. PHYSIOLOGIA PLANTARUM 2022; 174:e13656. [PMID: 35243645 PMCID: PMC9314607 DOI: 10.1111/ppl.13656] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 05/27/2023]
Abstract
Plant growth and development depend on the availability of carbohydrates synthesised in photosynthesis (source activity) and utilisation of these carbohydrates for growth (sink activity). External conditions, such as temperature, nutrient availability and stress, can affect source as well as sink activity. Optimal utilisation of resources is under circadian clock control. This molecular timekeeper ensures that growth responses are adjusted to different photoperiod and temperature settings by modulating starch accumulation and degradation accordingly. For example, during the night, starch degradation is required to provide sugars for growth. Under favourable growth conditions, high sugar availability stimulates growth and development, resulting in an overall accelerated life cycle of annual plants. Key signalling components include trehalose-6-phosphate (Tre6P), which reflects sucrose availability and stimulates growth and branching when the conditions are favourable. Under sink limitation, Tre6P does, however, inhibit night-time starch degradation. Tre6P interacts with Sucrose-non-fermenting1-Related Kinase1 (SnRK1), a protein kinase that inhibits growth under starvation and stress conditions and delays development (including flowering and senescence). Tre6P inhibits SnRK1 activity, but SnRK1 increases the Tre6P to sucrose ratio under favourable conditions. Alongside Tre6P, Target of Rapamycin (TOR) stimulates processes such as protein synthesis and growth when sugar availability is high. In annual plants, an accelerated life cycle results in early leaf and plant senescence, thus shortening the lifespan. While the availability of carbohydrates in the form of sucrose and other sugars also plays an important role in seasonal life cycle events (phenology) of perennial plants, the sugar signalling pathways in perennials are less well understood.
Collapse
Affiliation(s)
- Astrid Wingler
- School of Biological, Earth & Environmental Sciences and Environmental Research InstituteUniversity College Cork, Distillery FieldsCork
| | - Rossana Henriques
- School of Biological, Earth & Environmental Sciences and Environmental Research InstituteUniversity College Cork, Distillery FieldsCork
| |
Collapse
|
50
|
Lai C, Chen Z, Ding Y, Chen Q, Su S, Liu H, Ni R, Tang Z. Rapamycin Attenuated Zinc-Induced Tau Phosphorylation and Oxidative Stress in Rats: Involvement of Dual mTOR/p70S6K and Nrf2/HO-1 Pathways. Front Immunol 2022; 13:782434. [PMID: 35197970 PMCID: PMC8858937 DOI: 10.3389/fimmu.2022.782434] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is pathologically characterized by abnormal accumulation of amyloid-beta plaques, neurofibrillary tangles, oxidative stress, neuroinflammation, and neurodegeneration. Metal dysregulation, including excessive zinc released by presynaptic neurons, plays an important role in tau pathology and oxidase activation. The activities of mammalian target of rapamycin (mTOR)/ribosomal S6 protein kinase (p70S6K) are elevated in the brains of patients with Alzheimer's disease. Zinc induces tau hyperphosphorylation via mTOR/P70S6K activation in vitro. However, the involvement of the mTOR/P70S6K pathway in zinc-induced oxidative stress, tau degeneration, and synaptic and cognitive impairment has not been fully elucidated in vivo. Here, we assessed the effect of pathological zinc concentrations in SH-SY5Y cells by using biochemical assays and immunofluorescence staining. Rats (n = 18, male) were laterally ventricularly injected with zinc, treated with rapamycin (intraperitoneal injection) for 1 week, and assessed using the Morris water maze. Evaluation of oxidative stress, tau phosphorylation, and synaptic impairment was performed using the hippocampal tissue of the rats by biochemical assays and immunofluorescence staining. The results from the Morris water maze showed that the capacity of spatial memory was impaired in zinc-treated rats. Zinc sulfate significantly increased the levels of P-mTOR Ser2448, P-p70S6K Thr389, and P-tau Ser356 and decreased the levels of nuclear factor erythroid 2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) in SH-SY5Y cells and in zinc-treated rats compared with the control groups. Increased expression of reactive oxygen species was observed in zinc sulfate-induced SH-SY5Y cells and in the hippocampus of zinc-injected rats. Rapamycin, an inhibitor of mTOR, rescued zinc-induced increases in mTOR/p70S6K activation, tau phosphorylation, and oxidative stress, and Nrf2/HO-1 inactivation, cognitive impairment, and synaptic impairment reduced the expression of synapse-related proteins in zinc-injected rats. In conclusion, our findings imply that rapamycin prevents zinc-induced cognitive impairment and protects neurons from tau pathology, oxidative stress, and synaptic impairment by decreasing mTOR/p70S6K hyperactivity and increasing Nrf2/HO-1 activity.
Collapse
Affiliation(s)
- Chencen Lai
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
- Department of Nosocomial Infection, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhuyi Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yuanting Ding
- Department of Nosocomial Infection, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qian Chen
- Department of Nosocomial Infection, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Songbai Su
- Department of Nosocomial Infection, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Heng Liu
- Department of Anesthesiology, Tongren Municipal People’s Hospital, Tongren, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Eidgenössische Technische Hochschule Zürich (ETH) and University of Zurich, Zurich, Switzerland
| | - Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| |
Collapse
|