1
|
Zhong Y, Lin D, Li S, Wang Q, Liu H, Ma L, Liu H. Enhanced nitrogen removal via Yarrowia lipolytica-mediated nitrogen and related metabolism of Chlorella pyrenoidosa from wastewater. Front Bioeng Biotechnol 2023; 11:1159297. [PMID: 37425353 PMCID: PMC10325826 DOI: 10.3389/fbioe.2023.1159297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
We investigated the optimum co-culture ratio with the highest biological nitrogen removal rate, revealing that chemical oxygen demand, total nitrogen (TN), and ammoniacal nitrogen (NH3-N) removal was increased in the Chlorella pyrenoidosa and Yarrowia lipolytica co-culture system at a 3:1 ratio. Compared with the control, TN and NH3-N content in the co-incubated system was decreased within 2-6 days. We investigated mRNA/microRNA (miRNA) expression in the C. pyrenoidosa and Y. lipolytica co-culture after 3 and 5 days, identifying 9885 and 3976 differentially expressed genes (DEGs), respectively. Sixty-five DEGs were associated with Y. lipolytica nitrogen, amino acid, photosynthetic, and carbon metabolism after 3 days. Eleven differentially expressed miRNAs were discovered after 3 days, of which two were differentially expressed and their target mRNA expressions negatively correlated with each other. One of these miRNAs regulates gene expression of cysteine dioxygenase, hypothetical protein, and histone-lysine N-methyltransferase SETD1, thereby reducing amino acid metabolic capacity; the other miRNA may promote upregulation of genes encoding the ATP-binding cassette, subfamily C (CFTR/MRP), member 10 (ABCC10), thereby promoting nitrogen and carbon transport in C. pyrenoidosa. These miRNAs may further contribute to the activation of target mRNAs. miRNA/mRNA expression profiles confirmed the synergistic effects of a co-culture system on pollutant disposal.
Collapse
Affiliation(s)
- Yuming Zhong
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Danni Lin
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Sufen Li
- Institute of Water Environment Engineering, Xinhua College of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qin Wang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lukai Ma
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Huifan Liu
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Zheng Z, Xu Z, Cai C, Liao Y, Yang C, Du X, Huang R, Deng Y. Circulating exosome miRNA, is it the novel nutrient molecule through cross-kingdom regulation mediated by food chain transmission from microalgae to bivalve? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101004. [PMID: 35644102 DOI: 10.1016/j.cbd.2022.101004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) can efficiently regulate gene expression at intracellular and extracellular levels. Plant-derived miRNAs are highly enriched in animal haemolymph and regulate mammalian gene expression. However, evidence for food-derived miRNAs in Mollusca species is lacking. In this study, we fed the microalga Nannochloropsis oculata to the pearl oyster Pinctada fucata martensii and detected dietary miRNAs in exosomes isolated from the haemolymph by RNA-seq. In total, 273 endogenous miRNAs were identified in all biological replicates. We identified 23 microalgae-derived miRNAs in the exosomes of pearl oyster haemolymph. Most microalgae-derived miRNAs showed high expression levels in both exosomes and microalgae and exhibited apparent variation among individuals. These food-derived miRNAs were predicted to participate in endocytosis, apoptosis, signal transduction, energy metabolism, and biomineralization by targeting multiple genes. These findings demonstrated the cross-kingdom transport of miRNAs from microalgae to bivalves and provide insights into novel nutrient transmission through the food chain.
Collapse
Affiliation(s)
- Zhe Zheng
- Guangdong Ocean University, Fishery College, 524088 Zhanjiang, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Zhijie Xu
- Guangdong Ocean University, Fishery College, 524088 Zhanjiang, China
| | - Caixia Cai
- Guangdong Ocean University, Fishery College, 524088 Zhanjiang, China
| | - Yongshan Liao
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China
| | - Chuangye Yang
- Guangdong Ocean University, Fishery College, 524088 Zhanjiang, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Xiaodong Du
- Guangdong Ocean University, Fishery College, 524088 Zhanjiang, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China
| | - Ronglian Huang
- Guangdong Ocean University, Fishery College, 524088 Zhanjiang, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Yuewen Deng
- Guangdong Ocean University, Fishery College, 524088 Zhanjiang, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.
| |
Collapse
|
3
|
Ranjbar S, Malcata FX. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Molecules 2022; 27:1473. [PMID: 35268582 PMCID: PMC8911655 DOI: 10.3390/molecules27051473] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
Contamination of the biosphere by heavy metals has been rising, due to accelerated anthropogenic activities, and is nowadays, a matter of serious global concern. Removal of such inorganic pollutants from aquatic environments via biological processes has earned great popularity, for its cost-effectiveness and high efficiency, compared to conventional physicochemical methods. Among candidate organisms, microalgae offer several competitive advantages; phycoremediation has even been claimed as the next generation of wastewater treatment technologies. Furthermore, integration of microalgae-mediated wastewater treatment and bioenergy production adds favorably to the economic feasibility of the former process-with energy security coming along with environmental sustainability. However, poor biomass productivity under abiotic stress conditions has hindered the large-scale deployment of microalgae. Recent advances encompassing molecular tools for genome editing, together with the advent of multiomics technologies and computational approaches, have permitted the design of tailor-made microalgal cell factories, which encompass multiple beneficial traits, while circumventing those associated with the bioaccumulation of unfavorable chemicals. Previous studies unfolded several routes through which genetic engineering-mediated improvements appear feasible (encompassing sequestration/uptake capacity and specificity for heavy metals); they can be categorized as metal transportation, chelation, or biotransformation, with regulation of metal- and oxidative stress response, as well as cell surface engineering playing a crucial role therein. This review covers the state-of-the-art metal stress mitigation mechanisms prevalent in microalgae, and discusses putative and tested metabolic engineering approaches, aimed at further improvement of those biological processes. Finally, current research gaps and future prospects arising from use of transgenic microalgae for heavy metal phycoremediation are reviewed.
Collapse
Affiliation(s)
- Saeed Ranjbar
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Francisco Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
4
|
Zhang J, Shi J, Yuan C, Liu X, Du G, Fan R, Zhang B. MicroRNA Expression Profile Analysis of Chlamydomonas reinhardtii during Lipid Accumulation Process under Nitrogen Deprivation Stresses. Bioengineering (Basel) 2021; 9:bioengineering9010006. [PMID: 35049715 PMCID: PMC8773410 DOI: 10.3390/bioengineering9010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
Lipid accumulation in various microalgae has been found induced by nitrogen deprivation, and it controls many different genes expression. Yet, the underlying molecular mechanisms still remain largely unknown. MicroRNA (miRNAs) play a critical role in post-transcriptional gene regulation. In this study, miRNAs were hypothesized involved in lipid accumulation by nitrogen deprivation. A deep-sequencing platform was used to explore miRNAs-mediated responses induced by nitrogen deprivation in Chlamydomonas reinhardtii. The eukaryotic orthologous groups of proteins (KOG) function in the predicted target genes of miRNA with response to nitrogen deprivation were mainly involved in signal transduction mechanisms, including transcription, lipid transport, and metabolism. A total of 109 miRNA were predicted, including 79 known miRNA and 30 novel miRNA. A total of 29 miRNAs showed significantly differential expressions after nitrogen deprivation, and most of them were upregulated. A total of 10 miRNAs and their targeting genes might involve in lipid transport and metabolism biological process. This study first investigates nitrogen deprivation-regulated miRNAs in microalgae and broadens perspectives on miRNAs importance in microalgae lipid accumulation via nitrogen deprivation. This study provides theoretical guidance for the application of microalgae in bio-oil engineering production.
Collapse
Affiliation(s)
- Jingxian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenyang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiangcen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilin Du
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruimei Fan
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China
- Correspondence: (R.F.); (B.Z.)
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China; (J.Z.); (J.S.); (C.Y.); (X.L.); (G.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (R.F.); (B.Z.)
| |
Collapse
|
5
|
Paul S, Bravo Vázquez LA, Márquez Nafarrate M, Gutiérrez Reséndiz AI, Srivastava A, Sharma A. The regulatory activities of microRNAs in non-vascular plants: a mini review. PLANTA 2021; 254:57. [PMID: 34424349 DOI: 10.1007/s00425-021-03707-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/14/2021] [Indexed: 05/21/2023]
Abstract
MicroRNA-mediated gene regulation in non-vascular plants is potentially involved in several unique biological functions, including biosynthesis of several highly valuable exclusive bioactive compounds, and those small RNAs could be manipulated for the overproduction of essential bioactive compounds in the future. MicroRNAs (miRNAs) are a class of endogenous, small (20-24 nucleotides), non-coding RNA molecules that regulate gene expression through the miRNA-mediated mechanisms of either translational inhibition or messenger RNA (mRNA) cleavage. In the past years, studies have mainly focused on elucidating the roles of miRNAs in vascular plants as compared to non-vascular plants. However, non-vascular plant miRNAs have been predicted to be involved in a wide variety of specific biological mechanisms; nevertheless, some of them have been demonstrated explicitly, thus showing that the research field of this plant group owns a noteworthy potential to develop novel investigations oriented towards the functional characterization of these miRNAs. Furthermore, the insights into the roles of miRNAs in non-vascular plants might be of great importance for designing the miRNA-based genetically modified plants for valuable secondary metabolites, active compounds, and biofuels in the future. Therefore, in this current review, we provide an overview of the potential roles of miRNAs in different groups of non-vascular plants such as algae and bryophytes.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico
| | - Marilyn Márquez Nafarrate
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Av. Eugenio Garza Sada, No. 2501 Tecnologico, CP 64849, Monterrey, Mexico
| | - Ana Isabel Gutiérrez Reséndiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico.
| |
Collapse
|