1
|
Singh H, Dhotre K, Shyamveer, Choudhari R, Verma A, Mahajan SD, Ali N. ABCG2 polymorphisms and susceptibility to ARV-associated hepatotoxicity. Mol Genet Genomic Med 2024; 12:e2362. [PMID: 38451012 PMCID: PMC10955225 DOI: 10.1002/mgg3.2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The ABCG2 421C/A polymorphism contributes significantly to the distribution and absorption of antiretroviral (ARV) regimens and is associated with the undesirable side effects of efavirenz. METHODS To investigate this, we examined ABCG2 34G/A (rs2231137) and 421C/A (rs2231142) genetic variations in 149 HIV-infected patients (116 without hepatotoxicity, 33 with ARV-induced hepatotoxicity) and 151 healthy controls through the PCR-restriction fragment length polymorphism (PCR-RFLP) technique. RESULTS AND DISCUSSION The ABCG2 34GA genotype and 34A allele indicated a risk for antiretroviral therapy-associated hepatotoxicity development (p = 0.09, OR = 1.58, 95% CI: 0.93-2.69; p = 0.06, OR = 1.50, 95% CI: 0.98-2.30). The haplotype GA was associated with hepatotoxicity (p = 0.042, OR = 2.37, 95% CI: 1.04-5.43; p = 0.042, OR = 2.49, 95% CI: 1.04-5.96). Moreover, when comparing HIV patients with hepatotoxicity to healthy controls, the haplotype GA had an association with an elevated risk for the development of hepatotoxicity (p = 0.041, OR = 1.73, 95% CI: 1.02-2.93). Additionally, the association of the ABCG2 34GA genotype with the progression of HIV (p = 0.02, OR = 1.97, 95% CI: 1.07-3.63) indicated a risk for advanced HIV infection. Furthermore, the ABCG2 421AA genotype was linked to tobacco users and featured as a risk factor for the progression of HIV disease (p = 0.03, OR = 11.07, 95% CI: 1.09-270.89). CONCLUSION The haplotype GA may enhance the risk of hepatotoxicity development and its severity. Individuals with the ABCG2 34A allele may also be at risk for the development of hepatotoxicity. Additionally, individuals with an advanced stage of HIV and the ABCG2 34GA genotype may be at risk for disease progression.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular BiologyNational AIDS Research InstitutePuneIndia
| | - Kishore Dhotre
- Department of Molecular BiologyNational AIDS Research InstitutePuneIndia
| | - Shyamveer
- Department of Molecular BiologyNational AIDS Research InstitutePuneIndia
| | - Ranjana Choudhari
- Department of Molecular BiologyNational AIDS Research InstitutePuneIndia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical SciencesSam Higginbottom University of Agriculture, Technology and SciencesAllahabadIndia
| | - Supriya D. Mahajan
- Department of Medicine, Jacobs School of Medicine & Biomedical SciencesUniversity at Buffalo's Clinical Translational Research CenterBuffaloNew YorkUSA
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
2
|
Kukal S, Guin D, Rawat C, Bora S, Mishra MK, Sharma P, Paul PR, Kanojia N, Grewal GK, Kukreti S, Saso L, Kukreti R. Multidrug efflux transporter ABCG2: expression and regulation. Cell Mol Life Sci 2021; 78:6887-6939. [PMID: 34586444 PMCID: PMC11072723 DOI: 10.1007/s00018-021-03901-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
The adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) was originally discovered in a multidrug-resistant breast cancer cell line. Studies in the past have expanded the understanding of its role in physiology, disease pathology and drug resistance. With a widely distributed expression across different cell types, ABCG2 plays a central role in ATP-dependent efflux of a vast range of endogenous and exogenous molecules, thereby maintaining cellular homeostasis and providing tissue protection against xenobiotic insults. However, ABCG2 expression is subjected to alterations under various pathophysiological conditions such as inflammation, infection, tissue injury, disease pathology and in response to xenobiotics and endobiotics. These changes may interfere with the bioavailability of therapeutic substrate drugs conferring drug resistance and in certain cases worsen the pathophysiological state aggravating its severity. Considering the crucial role of ABCG2 in normal physiology, therapeutic interventions directly targeting the transporter function may produce serious side effects. Therefore, modulation of transporter regulation instead of inhibiting the transporter itself will allow subtle changes in ABCG2 activity. This requires a thorough comprehension of diverse factors and complex signaling pathways (Kinases, Wnt/β-catenin, Sonic hedgehog) operating at multiple regulatory levels dictating ABCG2 expression and activity. This review features a background on the physiological role of transporter, factors that modulate ABCG2 levels and highlights various signaling pathways, molecular mechanisms and genetic polymorphisms in ABCG2 regulation. This understanding will aid in identifying potential molecular targets for therapeutic interventions to overcome ABCG2-mediated multidrug resistance (MDR) and to manage ABCG2-related pathophysiology.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Priya Sharma
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gurpreet Kaur Grewal
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, 144004, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Gundacker C, Graf-Rohrmeister K, Gencik M, Hengstschläger M, Holoman K, Rosa P, Kroismayr R, Offenthaler I, Plichta V, Reischer T, Teufl I, Raffesberg W, Scharf S, Köhler-Vallant B, Delissen Z, Weiß S, Uhl M. Gene Variants Determine Placental Transfer of Perfluoroalkyl Substances (PFAS), Mercury (Hg) and Lead (Pb), and Birth Outcome: Findings From the UmMuKi Bratislava-Vienna Study. Front Genet 2021; 12:664946. [PMID: 34220941 PMCID: PMC8242356 DOI: 10.3389/fgene.2021.664946] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Prenatal exposure to perfluoroalkyl substances (PFAS), bisphenol A (BPA), lead (Pb), total mercury (THg), and methylmercury (MeHg) can affect fetal development. Factors influencing placental transfer rate of these toxins are poorly investigated. Whether prenatal exposure to pollutants has an effect on birth weight is incompletely understood. We therefore aimed (1) to determine placental transfer rates of PFAS, BPA, Pb, THg, and MeHg, (2) to analyze relationships between fetal exposure and birth outcome and (3) to analyze gene variants as mediators of placental transfer rates and birth outcome. Two hundred healthy pregnant women and their newborns participated in the study. BPA, 16 PFAS, THg, MeHg, and Pb were determined using HPLCMS/MS (BPA, PFAS), HPLC-CV-ICPMS (MeHg), CV-AFS (THg), and GF-AAS (Pb). Questionnaires and medical records were used to survey exposure sources and birth outcome. 20 single nucleotide polymorphisms and two deletion polymorphisms were determined by real-time PCR from both maternal and newborn blood. Genotype-phenotype associations were analyzed by categorical regression and logistic regression analysis. Specific gene variants were associated with altered placental transfer of PFAS (ALAD Lys59Asn, ABCG2 Gln141Lys), THg (UGT Tyr85Asp, GSTT1del, ABCC1 rs246221) and Pb (GSTP1 Ala114Val). A certain combination of three gene polymorphisms (ABCC1 rs246221, GCLM rs41303970, HFE His63Asp) was over-represented in newborns small for gestational age. 36% of Austrian and 75% of Slovakian mothers had levels exceeding the HBM guidance value I (2 μg/L) of the German HBM Commission for PFOA. 13% of newborns and 39% of women had Ery-Pb levels above 24 μg/kg, an approximation for the BMDL01 of 12 μg/L set by the European Food Safety Authority (EFSA). Our findings point to the need to minimize perinatal exposures to protect fetal health, especially those genetically predisposed to increased transplacental exposure.
Collapse
Affiliation(s)
- Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Karol Holoman
- University Hospital Bratislava-Ružinov, Bratislava, Slovakia
| | - Petra Rosa
- University Hospital Bratislava-Ružinov, Bratislava, Slovakia
| | - Renate Kroismayr
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,Environment Agency Austria, Vienna, Austria
| | | | - Veronika Plichta
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.,Austrian Agency for Food and Health Safety, Vienna, Austria
| | - Theresa Reischer
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Isabella Teufl
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Zoja Delissen
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.,Medgene, Bratislava, Slovakia
| | | | - Maria Uhl
- Environment Agency Austria, Vienna, Austria
| |
Collapse
|