1
|
Mosharaf MP, Alam K, Gow J, Mahumud RA, Mollah MNH. Common molecular and pathophysiological underpinnings of delirium and Alzheimer's disease: molecular signatures and therapeutic indications. BMC Geriatr 2024; 24:716. [PMID: 39210294 PMCID: PMC11363673 DOI: 10.1186/s12877-024-05289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Delirium and Alzheimer's disease (AD) are common causes of cognitive dysfunction among older adults. These neurodegenerative diseases share a common and complex relationship, and can occur individually or concurrently, increasing the chance of permanent mental dysfunction. However, the common molecular pathophysiology, key proteomic biomarkers, and functional pathways are largely unknown, whereby delirium is superimposed on AD and dementia. METHODS We employed an integrated bioinformatics and system biology analysis approach to decipher such common key proteomic signatures, pathophysiological links between delirium and AD by analyzing the gene expression data of AD-affected human brain samples and comparing them with delirium-associated proteins. The present study identified the common drug target hub-proteins examining the protein-protein interaction (PPI) and gene regulatory network analysis. The functional enrichment and pathway analysis was conducted to reveal the common pathophysiological relationship. Finally, the molecular docking and dynamic simulation was used to computationally identify and validate the potential drug target and repurposable drugs for delirium and AD. RESULTS We detected 99 shared differentially expressed genes (sDEGs) associated with AD and delirium. The sDEGs-set enrichment analysis detected the transmission across chemical synapses, neurodegeneration pathways, neuroinflammation and glutamatergic signaling pathway, oxidative stress, and BDNF signaling pathway as the most significant signaling pathways shared by delirium and AD. The disease-sDEGs interaction analysis highlighted the other disease risk factors with delirium and AD development and progression. Among the sDEGs of delirium and AD, the top 10 hub-proteins including ALB, APP, BDNF, CREB1, DLG4, GAD1, GAD2, GFAP, GRIN2B and GRIN2A were found by the PPI network analysis. Based on the maximum molecular docking binding affinities and molecular dynamic simulation (100 ns) results, the ALB and GAD2 were found as prominent drug target proteins when tacrine and donepezil were identified as potential drug candidates for delirium and AD. CONCLUSION The study outlined the common key biomolecules and biological pathways shared by delirium and AD. The computationally reported potential drug molecules need a deeper investigation including clinical trials to validate their effectiveness. The outcomes from this study will help to understand the typical pathophysiological relationship between delirium and AD and flag future therapeutic development research for delirium.
Collapse
Affiliation(s)
- Md Parvez Mosharaf
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Khorshed Alam
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
- Centre for Health Research, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Jeff Gow
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
- School of Accounting, Economics and Finance, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Rashidul Alam Mahumud
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
- Health Economics and Health Technology Assessment Unit, NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Md Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
2
|
Mosharaf MP, Alam K, Gow J, Mahumud RA. Exploration of key drug target proteins highlighting their related regulatory molecules, functional pathways and drug candidates associated with delirium: evidence from meta-data analyses. BMC Geriatr 2023; 23:767. [PMID: 37993790 PMCID: PMC10666371 DOI: 10.1186/s12877-023-04457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/04/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Delirium is a prevalent neuropsychiatric medical phenomenon that causes serious emergency outcomes, including mortality and morbidity. It also increases the suffering and the economic burden for families and carers. Unfortunately, the pathophysiology of delirium is still unknown, which is a major obstacle to therapeutic development. The modern network-based system biology and multi-omics analysis approach has been widely used to recover the key drug target biomolecules and signaling pathways associated with disease pathophysiology. This study aimed to identify the major drug target hub-proteins associated with delirium, their regulatory molecules with functional pathways, and repurposable drug candidates for delirium treatment. METHODS We used a comprehensive proteomic seed dataset derived from a systematic literature review and the Comparative Toxicogenomics Database (CTD). An integrated multi-omics network-based bioinformatics approach was utilized in this study. The STRING database was used to construct the protein-protein interaction (PPI) network. The gene set enrichment and signaling pathways analysis, the regulatory transcription factors and microRNAs were conducted using delirium-associated genes. Finally, hub-proteins associated repurposable drugs were retrieved from CMap database. RESULTS We have distinguished 11 drug targeted hub-proteins (MAPK1, MAPK3, TP53, JUN, STAT3, SRC, RELA, AKT1, MAPK14, HSP90AA1 and DLG4), 5 transcription factors (FOXC1, GATA2, YY1, TFAP2A and SREBF1) and 6 microRNA (miR-375, miR-17-5, miR-17-5p, miR-106a-5p, miR-125b-5p, and miR-125a-5p) associated with delirium. The functional enrichment and pathway analysis revealed the cytokines, inflammation, postoperative pain, oxidative stress-associated pathways, developmental biology, shigellosis and cellular senescence which are closely connected with delirium development and the hallmarks of aging. The hub-proteins associated computationally identified repurposable drugs were retrieved from database. The predicted drug molecules including aspirin, irbesartan, ephedrine-(racemic), nedocromil, and guanidine were characterized as anti-inflammatory, stimulating the central nervous system, neuroprotective medication based on the existing literatures. The drug molecules may play an important role for therapeutic development against delirium if they are investigated more extensively through clinical trials and various wet lab experiments. CONCLUSION This study could possibly help future research on investigating the delirium-associated therapeutic target biomarker hub-proteins and repurposed drug compounds. These results will also aid understanding of the molecular mechanisms that underlie the pathophysiology of delirium onset and molecular function.
Collapse
Affiliation(s)
- Md Parvez Mosharaf
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Khorshed Alam
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Jeff Gow
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
- School of Accounting, Economics and Finance, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Rashidul Alam Mahumud
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
3
|
A Systematic Review of the Human Accelerated Regions in Schizophrenia and Related Disorders: Where the Evolutionary and Neurodevelopmental Hypotheses Converge. Int J Mol Sci 2023; 24:ijms24043597. [PMID: 36835010 PMCID: PMC9962562 DOI: 10.3390/ijms24043597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Schizophrenia is a psychiatric disorder that results from genetic and environmental factors interacting and disrupting neurodevelopmental trajectories. Human Accelerated Regions (HARs) are evolutionarily conserved genomic regions that have accumulated human-specific sequence changes. Thus, studies on the impact of HARs in the context of neurodevelopment, as well as with respect to adult brain phenotypes, have increased considerably in the last few years. Through a systematic approach, we aim to offer a comprehensive review of HARs' role in terms of human brain development, configuration, and cognitive abilities, as well as whether HARs modulate the susceptibility to neurodevelopmental psychiatric disorders such as schizophrenia. First, the evidence in this review highlights HARs' molecular functions in the context of the neurodevelopmental regulatory genetic machinery. Second, brain phenotypic analyses indicate that HAR genes' expression spatially correlates with the regions that suffered human-specific cortical expansion, as well as with the regional interactions for synergistic information processing. Lastly, studies based on candidate HAR genes and the global "HARome" variability describe the involvement of these regions in the genetic background of schizophrenia, but also in other neurodevelopmental psychiatric disorders. Overall, the data considered in this review emphasise the crucial role of HARs in human-specific neurodevelopment processes and encourage future research on this evolutionary marker for a better understanding of the genetic basis of schizophrenia and other neurodevelopmental-related psychiatric disorders. Accordingly, HARs emerge as interesting genomic regions that require further study in order to bridge the neurodevelopmental and evolutionary hypotheses in schizophrenia and other related disorders and phenotypes.
Collapse
|
4
|
Kondoh K, Akahori H, Muto Y, Terada T. Identification of Key Genes and Pathways Associated with Preeclampsia by a WGCNA and an Evolutionary Approach. Genes (Basel) 2022; 13:genes13112134. [PMID: 36421809 PMCID: PMC9690438 DOI: 10.3390/genes13112134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Preeclampsia (PE) is the serious obstetric-related disease characterized by newly onset hypertension and causes damage to the kidneys, brain, liver, and more. To investigate genes with key roles in PE’s pathogenesis and their contributions, we used a microarray dataset of normotensive and PE patients and conducted a weighted gene co-expression network analysis (WGCNA). Cyan and magenta modules that are highly enriched with differentially expressed genes (DEGs) were revealed. By using the molecular complex detection (MCODE) algorithm, we identified five significant clusters in the cyan module protein–protein interaction (PPI) network and nine significant clusters in the magenta module PPI network. Our analyses indicated that (i) human accelerated region (HAR) genes are enriched in the magenta-associated C6 cluster, and (ii) positive selection (PS) genes are enriched in the cyan-associated C3 and C5 clusters. We propose these enriched HAR and PS genes, i.e., EIF4E, EIF5, EIF3M, DDX17, SRSF11, PSPC1, SUMO1, CAPZA1, PSMD14, and MNAT1, including highly connected hub genes, HNRNPA1, RBMX, PRKDC, and RANBP2, as candidate key genes for PE’s pathogenesis. A further clarification of the functions of these PPI clusters and key enriched genes will contribute to the discovery of diagnostic biomarkers for PE and therapeutic intervention targets.
Collapse
Affiliation(s)
- Kuniyo Kondoh
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu-City 501-1193, Gifu, Japan
- School of Nursing, Gifu University of Health Sciences, 2-92, Higashiuzura, Gifu-City 500-8281, Gifu, Japan
| | - Hiromichi Akahori
- Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu-City 501-1193, Gifu, Japan
| | - Yoshinori Muto
- Institute for Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu-City 501-1193, Gifu, Japan
| | - Tomoyoshi Terada
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu-City 501-1193, Gifu, Japan
- Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu-City 501-1193, Gifu, Japan
- Correspondence: ; Tel.: +81-58-293-3241
| |
Collapse
|
5
|
Dehghan Z, Mohammadi-Yeganeh S, Sameni M, Mirmotalebisohi SA, Zali H, Salehi M. Repurposing new drug candidates and identifying crucial molecules underlying PCOS Pathogenesis Based On Bioinformatics Analysis. Daru 2021; 29:353-366. [PMID: 34480296 PMCID: PMC8416576 DOI: 10.1007/s40199-021-00413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUNDS Polycystic ovary syndrome affects 7% of women of reproductive ages. Poor-quality oocytes, along with lower cleavage and implantation rates, reduce fertilization. OBJECTIVE This study aimed to determine crucial molecular mechanisms behind PCOS pathogenesis and repurpose new drug candidates interacting with them. To predict a more in-depth insight, we applied a novel bioinformatics approach to analyze interactions between the drug-related and PCOS proteins in PCOS patients. METHODS The newest proteomics data was retrieved from 16 proteomics datasets and was used to construct the PCOS PPI network using Cytoscape. The topological network analysis determined hubs and bottlenecks. The MCODE Plugin was used to identify highly connected regions, and the associations between PCOS clusters and drug-related proteins were evaluated using the Chi-squared/Fisher's exact test. The crucial PPI hub-bottlenecks and the shared molecules (between the PCOS clusters and drug-related proteins) were then investigated for their drug-protein interactions with previously US FDA-approved drugs to predict new drug candidates. RESULTS The PI3K/AKT pathway was significantly related to one PCOS subnetwork and most drugs (metformin, letrozole, pioglitazone, and spironolactone); moreover, VEGF, EGF, TGFB1, AGT, AMBP, and RBP4 were identified as the shared proteins between the PCOS subnetwork and the drugs. The shared top biochemical pathways between another PCOS subnetwork and rosiglitazone included metabolic pathways, carbon metabolism, and citrate cycle, while the shared proteins included HSPB1, HSPD1, ACO2, TALDO1, VDAC1, and MDH2. We proposed some new candidate medicines for further PCOS treatment investigations, such as copper and zinc compounds, reteplase, alteplase, gliclazide, Etc. CONCLUSION Some of the crucial molecules suggested by our model have already been experimentally reported as critical molecules in PCOS pathogenesis. Moreover, some repurposed medications have already shown beneficial effects on infertility treatment. These previous experimental reports confirm our suggestion for investigating our other repurposed drugs (in vitro and in vivo).
Collapse
Affiliation(s)
- Zeinab Dehghan
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Ohsawa S, Umemura T, Terada T, Muto Y. Network and Evolutionary Analysis of Human Epigenetic Regulators to Unravel Disease Associations. Genes (Basel) 2020; 11:genes11121457. [PMID: 33291839 PMCID: PMC7761991 DOI: 10.3390/genes11121457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
We carried out a system-level analysis of epigenetic regulators (ERs) and detailed the protein–protein interaction (PPI) network characteristics of disease-associated ERs. We found that most diseases associated with ERs can be clustered into two large groups, cancer diseases and developmental diseases. ER genes formed a highly interconnected PPI subnetwork, indicating a high tendency to interact and agglomerate with one another. We used the disease module detection (DIAMOnD) algorithm to expand the PPI subnetworks into a comprehensive cancer disease ER network (CDEN) and developmental disease ER network (DDEN). Using the transcriptome from early mouse developmental stages, we identified the gene co-expression modules significantly enriched for the CDEN and DDEN gene sets, which indicated the stage-dependent roles of ER-related disease genes during early embryonic development. The evolutionary rate and phylogenetic age distribution analysis indicated that the evolution of CDEN and DDEN genes was mostly constrained, and these genes exhibited older evolutionary age. Our analysis of human polymorphism data revealed that genes belonging to DDEN and Seed-DDEN were more likely to show signs of recent positive selection in human history. This finding suggests a potential association between positive selection of ERs and risk of developmental diseases through the mechanism of antagonistic pleiotropy.
Collapse
Affiliation(s)
- Shinji Ohsawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan; (S.O.); (T.T.)
- Department of Nursing, Ogaki Women’s College, 1-109, Nishinokawa-cho, Ogaki 503-8554, Japan
| | - Toshiaki Umemura
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630, Sugitani, Toyama 930-0194, Japan;
| | - Tomoyoshi Terada
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan; (S.O.); (T.T.)
- Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Yoshinori Muto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan; (S.O.); (T.T.)
- Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu 501-1193, Japan
- Correspondence: ; Tel.: +81-58-293-3241
| |
Collapse
|