1
|
Yoshihisa A, Yoshimura S, Zhou J, Nishikawa K, Yamaguchi K, Kawasaki T. Essential role of rice ERF101 in the perception of TAL effectors and immune activation mediated by the CC-BED NLR Xa1. PLANT CELL REPORTS 2025; 44:49. [PMID: 39907826 PMCID: PMC11799121 DOI: 10.1007/s00299-025-03436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
KEY MESSAGE Rice CC-BED NLR Xa1 recognizes TAL effectors through the interaction between ERF101 and TAL effectors. The rice Xa1 gene encodes a nucleotide-binding leucine-rich repeat receptor with an N-terminal coiled coil-zinc finger BED (CC-BED) domain. Xa1 recognizes the transcription activator-like (TAL) effectors of Xanthomonas oryzae pv. oryzae (Xoo) in the nucleus, triggering a number of immune responses, including hypersensitive cell death. We previously discovered that the rice transcription factor ERF101 directly interacts with Xa1, and functions as a positive regulator of Xa1-dependent immunity. However, the involvement of ERF101 in Xa1-induced immunity remains unclear. We herein demonstrated that the expression of the CC-BED domain in rice protoplasts inhibited Xa1-induced cell death. However, the CC-BEDC165A,C168A domain which has mutations of cysteine residues conserved in the zinc-finger motifs of BED domains and is essential for forming tetrahedral coordination geometry, failed to inhibit cell death or interact with ERF101. Therefore, Xa1-induced cell death appears to depend on the interaction between the BED domain and ERF101. In addition, we generated transgenic plants overexpressing N-terminal or C-terminal FLAG-tagged ERF101. FLAG-ERF101 transgenic plants exhibited reduced levels of Xa1-mediated immunity against Xoo, even though the overexpression of ERF101-FLAG or non-tagged ERF101 enhanced immunity. This result was consistent with the CC-BED domain interacting with C-terminal tagged ERF101, but not N-terminal tagged ERF101, whereas N-terminal and C-terminal tagged ERF101 both interacted with TAL effectors. Therefore, the interaction between the BED domain and ERF101 appears to be essential for the recognition of TAL effectors by Xa1.
Collapse
Affiliation(s)
- Ayaka Yoshihisa
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, 631-8505, Japan
| | - Satomi Yoshimura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, 631-8505, Japan
| | - Junwen Zhou
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, 631-8505, Japan
| | - Kei Nishikawa
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, 631-8505, Japan
| | - Koji Yamaguchi
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, 631-8505, Japan
| | - Tsutomu Kawasaki
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, 631-8505, Japan.
- Agricultural Technology and Innovation Research Institute, Kindai University, Nakamachi, Nara, 631-8505, Japan.
| |
Collapse
|
2
|
Ma C, Tian X, Dong Z, Li H, Chen X, Liu W, Yin G, Ma S, Zhang L, Cao A, Liu C, Yan H, Sehgal SK, Zhang Z, Liu B, Wang S, Liu Q, Zhao Y, Zhao Y. An Aegilops longissima NLR protein with integrated CC-BED module mediates resistance to wheat powdery mildew. Nat Commun 2024; 15:8281. [PMID: 39333612 PMCID: PMC11436982 DOI: 10.1038/s41467-024-52670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), reduces wheat yields and grain quality, thus posing a significant threat to global food security. Wild relatives of wheat serve as valuable resources for resistance to powdery mildew. Here, the powdery mildew resistance gene Pm6Sl is cloned from the wild wheat species Aegilops longissima. It encodes a nucleotide-binding leucine-rich repeat (NLR) protein featuring a CC-BED module formed by a zinc finger BED (Znf-BED) domain integrated into the coiled-coil (CC) domain. The function of Pm6Sl is validated via mutagenesis, gene silencing, and transgenic assays. In addition, we develop a resistant germplasm harbouring Pm6Sl in a very small segment with no linkage drag along with the diagnostic gene marker pm6sl-1 to facilitate Pm6Sl deployment in wheat breeding programs. The cloning of Pm6Sl, a resistance gene with BED-NLR architecture, will increase our understanding of the molecular mechanisms underlying BED-NLR-mediated resistance to various pathogens.
Collapse
Affiliation(s)
- Chao Ma
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Xiubin Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhenjie Dong
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, P. R. China
| | - Huanhuan Li
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Xuexue Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenxuan Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Guihong Yin
- The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Shuyang Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liwei Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100083, P. R. China
| | - Aizhong Cao
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, P. R. China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250000, P. R. China
| | - Hongfei Yan
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, P. R. China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, P. R. China
| | - Shiwei Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100083, P. R. China
| | - Qianwen Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| | - Yusheng Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yue Zhao
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| |
Collapse
|
3
|
Zhang J, Nirmala J, Chen S, Jost M, Steuernagel B, Karafiatova M, Hewitt T, Li H, Edae E, Sharma K, Hoxha S, Bhatt D, Antoniou-Kourounioti R, Dodds P, Wulff BBH, Dolezel J, Ayliffe M, Hiebert C, McIntosh R, Dubcovsky J, Zhang P, Rouse MN, Lagudah E. Single amino acid change alters specificity of the multi-allelic wheat stem rust resistance locus SR9. Nat Commun 2023; 14:7354. [PMID: 37963867 PMCID: PMC10645757 DOI: 10.1038/s41467-023-42747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Most rust resistance genes thus far isolated from wheat have a very limited number of functional alleles. Here, we report the isolation of most of the alleles at wheat stem rust resistance gene locus SR9. The seven previously reported resistance alleles (Sr9a, Sr9b, Sr9d, Sr9e, Sr9f, Sr9g, and Sr9h) are characterised using a synergistic strategy. Loss-of-function mutants and/or transgenic complementation are used to confirm Sr9b, two haplotypes of Sr9e (Sr9e_h1 and Sr9e_h2), Sr9g, and Sr9h. Each allele encodes a highly related nucleotide-binding site leucine-rich repeat (NB-LRR) type immune receptor, containing an unusual long LRR domain, that confers resistance to a unique spectrum of isolates of the wheat stem rust pathogen. The only SR9 protein effective against stem rust pathogen race TTKSK (Ug99), SR9H, differs from SR9B by a single amino acid. SR9B and SR9G resistance proteins are also distinguished by only a single amino acid. The SR9 allelic series found in the B subgenome are orthologs of wheat stem rust resistance gene Sr21 located in the A subgenome with around 85% identity in protein sequences. Together, our results show that functional diversification of allelic variants at the SR9 locus involves single and multiple amino acid changes that recognize isolates of wheat stem rust.
Collapse
Affiliation(s)
- Jianping Zhang
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
- State Key Laboratory of Wheat and Maize Crop Science, National Wheat Innovation Centre, Centre for Crop Genome Engineering, and College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | | | - Shisheng Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, 261000, China
| | - Matthias Jost
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia
| | | | - Mirka Karafiatova
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, 77900, Olomouc, Czech Republic
| | - Tim Hewitt
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia
| | - Hongna Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, 261000, China
| | - Erena Edae
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Keshav Sharma
- US Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108, USA
| | - Sami Hoxha
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Dhara Bhatt
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia
| | - Rea Antoniou-Kourounioti
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Peter Dodds
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia
| | - Brande B H Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Centre for Desert Agriculture, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Jaroslav Dolezel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, 77900, Olomouc, Czech Republic
| | | | - Colin Hiebert
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Robert McIntosh
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia.
| | - Matthew N Rouse
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
- US Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108, USA.
| | - Evans Lagudah
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia.
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia.
| |
Collapse
|
4
|
Lüdke D, Yan Q, Rohmann PFW, Wiermer M. NLR we there yet? Nucleocytoplasmic coordination of NLR-mediated immunity. THE NEW PHYTOLOGIST 2022; 236:24-42. [PMID: 35794845 DOI: 10.1111/nph.18359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat immune receptors (NLRs) perceive the activity of pathogen-secreted effector molecules that, when undetected, promote colonisation of hosts. Signalling from activated NLRs converges with and potentiates downstream responses from activated pattern recognition receptors (PRRs) that sense microbial signatures at the cell surface. Efficient signalling of both receptor branches relies on the host cell nucleus as an integration point for transcriptional reprogramming, and on the macromolecular transport processes that mediate the communication between cytoplasm and nucleoplasm. Studies on nuclear pore complexes (NPCs), the nucleoporin proteins (NUPs) that compose NPCs, and nuclear transport machinery constituents that control nucleocytoplasmic transport, have revealed that they play important roles in regulating plant immune responses. Here, we discuss the contributions of nucleoporins and nuclear transport receptor (NTR)-mediated signal transduction in plant immunity with an emphasis on NLR immune signalling across the nuclear compartment boundary and within the nucleus. We also highlight and discuss cytoplasmic and nuclear functions of NLRs and their signalling partners and further consider the potential implications of NLR activation and resistosome formation in both cellular compartments for mediating plant pathogen resistance and programmed host cell death.
Collapse
Affiliation(s)
- Daniel Lüdke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Qiqi Yan
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Philipp F W Rohmann
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
- Biochemistry of Plant-Microbe Interactions, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| |
Collapse
|
5
|
Marchal C, Michalopoulou VA, Zou Z, Cevik V, Sarris PF. Show me your ID: NLR immune receptors with integrated domains in plants. Essays Biochem 2022; 66:527-539. [PMID: 35635051 PMCID: PMC9528084 DOI: 10.1042/ebc20210084] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are intracellular plant immune receptors that recognize pathogen effectors secreted into the plant cell. Canonical NLRs typically contain three conserved domains including a central nucleotide binding (NB-ARC) domain, C-terminal leucine-rich repeats (LRRs) and an N-terminal domain. A subfamily of plant NLRs contain additional noncanonical domain(s) that have potentially evolved from the integration of the effector targets in the canonical NLR structure. These NLRs with extra domains are thus referred to as NLRs with integrated domains (NLR-IDs). Here, we first summarize our current understanding of NLR-ID activation upon effector binding, focusing on the NLR pairs Pik-1/Pik-2, RGA4/RGA5, and RRS1/RPS4. We speculate on their potential oligomerization into resistosomes as it was recently shown for certain canonical plant NLRs. Furthermore, we discuss how our growing understanding of the mode of action of NLR-ID continuously informs engineering approaches to design new resistance specificities in the context of rapidly evolving pathogens.
Collapse
Affiliation(s)
- Clemence Marchal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, United Kingdom
| | - Vassiliki A Michalopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
| | - Zhou Zou
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath BA2 7AY, United Kingdom
| | - Volkan Cevik
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath BA2 7AY, United Kingdom
| | - Panagiotis F Sarris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, 714 09 Heraklion, Crete, Greece
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
6
|
Hussain A, Liu J, Mohan B, Burhan A, Nasim Z, Bano R, Ameen A, Zaynab M, Mukhtar MS, Pajerowska-Mukhtar KM. A genome-wide comparative evolutionary analysis of zinc finger-BED transcription factor genes in land plants. Sci Rep 2022; 12:12328. [PMID: 35853967 PMCID: PMC9296551 DOI: 10.1038/s41598-022-16602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Zinc finger (Zf)-BED proteins are a novel superfamily of transcription factors that controls numerous activities in plants including growth, development, and cellular responses to biotic and abiotic stresses. Despite their important roles in gene regulation, little is known about the specific functions of Zf-BEDs in land plants. The current study identified a total of 750 Zf-BED-encoding genes in 35 land plant species including mosses, bryophytes, lycophytes, gymnosperms, and angiosperms. The gene family size was somewhat proportional to genome size. All identified genes were categorized into 22 classes based on their specific domain architectures. Of these, class I (Zf-BED_DUF-domain_Dimer_Tnp_hAT) was the most common in the majority of the land plants. However, some classes were family-specific, while the others were species-specific, demonstrating diversity at different classification levels. In addition, several novel functional domains were also predicated including WRKY and nucleotide-binding site (NBS). Comparative genomics, transcriptomics, and proteomics provided insights into the evolutionary history, duplication, divergence, gene gain and loss, species relationship, expression profiling, and structural diversity of Zf-BEDs in land plants. The comprehensive study of Zf-BEDs in Gossypium sp., (cotton) also demonstrated a clear footprint of polyploidization. Overall, this comprehensive evolutionary study of Zf-BEDs in land plants highlighted significant diversity among plant species.
Collapse
Affiliation(s)
- Athar Hussain
- Genomics Lab, School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Jinbao Liu
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Binoop Mohan
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Akif Burhan
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Zunaira Nasim
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Raveena Bano
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Ayesha Ameen
- Office of Research Innovation and Commercialization, University of Management and Technology, Lahore, 54770, Pakistan
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 51807, Guangdong, China
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA.
| | | |
Collapse
|
7
|
Bouvet L, Percival-Alwyn L, Berry S, Fenwick P, Mantello CC, Sharma R, Holdgate S, Mackay IJ, Cockram J. Wheat genetic loci conferring resistance to stripe rust in the face of genetically diverse races of the fungus Puccinia striiformis f. sp. tritici. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:301-319. [PMID: 34837509 PMCID: PMC8741662 DOI: 10.1007/s00122-021-03967-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/05/2021] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Analysis of a wheat multi-founder population identified 14 yellow rust resistance QTL. For three of the four most significant QTL, haplotype analysis indicated resistance alleles were rare in European wheat. Stripe rust, or yellow rust (YR), is a major fungal disease of wheat (Triticum aestivum) caused by Puccinia striiformis Westend f. sp. tritici (Pst). Since 2011, the historically clonal European Pst races have been superseded by the rapid incursion of genetically diverse lineages, reducing the resistance of varieties previously showing durable resistance. Identification of sources of genetic resistance to such races is a high priority for wheat breeding. Here we use a wheat eight-founder multi-parent population genotyped with a 90,000 feature single nucleotide polymorphism array to genetically map YR resistance to such new Pst races. Genetic analysis of five field trials at three UK sites identified 14 quantitative trait loci (QTL) conferring resistance. Of these, four highly significant loci were consistently identified across all test environments, located on chromosomes 1A (QYr.niab-1A.1), 2A (QYr.niab-2A.1), 2B (QYr.niab-2B.1) and 2D (QYr.niab-2D.1), together explaining ~ 50% of the phenotypic variation. Analysis of these four QTL in two-way and three-way combinations showed combinations conferred greater resistance than single QTL, and genetic markers were developed that distinguished resistant and susceptible alleles. Haplotype analysis in a collection of wheat varieties found that the haplotypes associated with YR resistance at three of these four major loci were rare (≤ 7%) in European wheat, highlighting their potential utility for future targeted improvement of disease resistance. Notably, the physical interval for QTL QYr.niab-2B.1 contained five nucleotide-binding leucine-rich repeat candidate genes with integrated BED domains, of which two corresponded to the cloned resistance genes Yr7 and Yr5/YrSp.
Collapse
Affiliation(s)
- Laura Bouvet
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | | | | | | | - Rajiv Sharma
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | | | - Ian J Mackay
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Scotland's Rural College (SRUC), The King's Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
| |
Collapse
|