1
|
Zhuang J, Chen C, Fu W, Wang Y, Zhuang Q, Lu Y, Xie T, Xu R, Zeng S, Jiang Y, Xie Y, Wang G. Third-Generation Sequencing as a New Comprehensive Technology for Identifying Rare α- and β-Globin Gene Variants in Thalassemia Alleles in the Chinese Population. Arch Pathol Lab Med 2023; 147:208-214. [PMID: 35639603 DOI: 10.5858/arpa.2021-0510-oa] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 02/05/2023]
Abstract
CONTEXT.— Identification of rare thalassemia variants requires a combination of multiple diagnostic technologies. OBJECTIVE.— To investigate a new approach of comprehensive analysis of thalassemia alleles based on third-generation sequencing (TGS) for identification of α- and β-globin gene variants. DESIGN.— Enrolled in this study were 70 suspected carriers of rare thalassemia variants. Routine gap-polymerase chain reaction and DNA sequencing were used to detect rare thalassemia variants, and TGS technology was performed to identify α- and β-globin gene variants. RESULTS.— Twenty-three cases that carried rare variants in α- and β-globin genes were identified by the routine detection methods. TGS technology yielded a 7.14% (5 of 70) increment of rare α- and β-globin gene variants as compared with the routine methods. Among them, the rare deletional genotype of -THAI was the most common variant. In addition, rare variants of CD15 (G>A) (HBA2:c.46G>A), CD117/118(+TCA) (HBA1:c.354_355insTCA), and β-thalassemia 3.5-kilobase gene deletion were first identified in Fujian Province, China; to the best of our knowledge, this is the second report in the Chinese population. Moreover, HBA1:c.-24C>G, IVS-II-55 (G>T) (HBA1:c.300+55G>T) and hemoglobin (Hb) Maranon (HBA2:c.94A>G) were first identified in the Chinese population. We also identified rare Hb variants of HbC, HbG-Honolulu, Hb Miyashiro, and HbG-Coushatta in this study. CONCLUSIONS.— TGS technology can effectively and accurately detect deletional and nondeletional thalassemia variants simultaneously in one experiment. Our study also demonstrated the application value of TGS-based comprehensive analysis of thalassemia alleles in the detection of rare thalassemia gene variants.
Collapse
Affiliation(s)
- Jianlong Zhuang
- From the Prenatal Diagnosis Center (J. Zhuang, Fu, Y. Wang, Q. Zhuang, Zeng, Jiang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Chunnuan Chen
- From the Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China (Chen)
| | - Wanyu Fu
- From the Prenatal Diagnosis Center (J. Zhuang, Fu, Y. Wang, Q. Zhuang, Zeng, Jiang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Yuanbai Wang
- From the Prenatal Diagnosis Center (J. Zhuang, Fu, Y. Wang, Q. Zhuang, Zeng, Jiang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Qianmei Zhuang
- From the Prenatal Diagnosis Center (J. Zhuang, Fu, Y. Wang, Q. Zhuang, Zeng, Jiang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Yulin Lu
- From the Third-Generation Sequencing Business Unit, Berry Genomics Corporation, Beijing, China (Lu, T. Xie, Xu)
| | - Tiantian Xie
- From the Third-Generation Sequencing Business Unit, Berry Genomics Corporation, Beijing, China (Lu, T. Xie, Xu).,From the Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (Y. Xie)
| | - Ruofan Xu
- From the Third-Generation Sequencing Business Unit, Berry Genomics Corporation, Beijing, China (Lu, T. Xie, Xu)
| | - Shuhong Zeng
- From the Prenatal Diagnosis Center (J. Zhuang, Fu, Y. Wang, Q. Zhuang, Zeng, Jiang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Yuying Jiang
- From the Prenatal Diagnosis Center (J. Zhuang, Fu, Y. Wang, Q. Zhuang, Zeng, Jiang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China.,Authors Jiang, Y. Xie and G. Wang are co-lead authors
| | - Yingjun Xie
- From the Third-Generation Sequencing Business Unit, Berry Genomics Corporation, Beijing, China (Lu, T. Xie, Xu).,From the Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (Y. Xie).,Authors Jiang, Y. Xie and G. Wang are co-lead authors
| | - Gaoxiong Wang
- From the Prenatal Diagnosis Center (J. Zhuang, Fu, Y. Wang, Q. Zhuang, Zeng, Jiang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China.,From the Department of Surgery (G. Wang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China.,Authors Jiang, Y. Xie and G. Wang are co-lead authors
| |
Collapse
|
2
|
Nanopore Sequencing for De Novo Bacterial Genome Assembly and Search for Single-Nucleotide Polymorphism. Int J Mol Sci 2022; 23:ijms23158569. [PMID: 35955702 PMCID: PMC9369328 DOI: 10.3390/ijms23158569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Nanopore sequencing (ONT) is a new and rapidly developing method for determining nucleotide sequences in DNA and RNA. It serves the ability to obtain long reads of thousands of nucleotides without assembly and amplification during sequencing compared to next-generation sequencing. Nanopore sequencing can help for determination of genetic changes leading to antibiotics resistance. This study presents the application of ONT technology in the assembly of an E. coli genome characterized by a deletion of the tolC gene and known single-nucleotide variations leading to antibiotic resistance, in the absence of a reference genome. We performed benchmark studies to determine minimum coverage depth to obtain a complete genome, depending on the quality of the ONT data. A comparison of existing programs was carried out. It was shown that the Flye program demonstrates plausible assembly results relative to others (Shasta, Canu, and Necat). The required coverage depth for successful assembly strongly depends on the size of reads. When using high-quality samples with an average read length of 8 Kbp or more, the coverage depth of 30× is sufficient to assemble the complete genome de novo and reliably determine single-nucleotide variations in it. For samples with shorter reads with mean lengths of 2 Kbp, a higher coverage depth of 50× is required. Avoiding of mechanical mixing is obligatory for samples preparation. Nanopore sequencing can be used alone to determine antibiotics-resistant genetic features of bacterial strains.
Collapse
|
4
|
Abstract
Long-read sequencing technologies have now reached a level of accuracy and yield that allows their application to variant detection at a scale of tens to thousands of samples. Concomitant with the development of new computational tools, the first population-scale studies involving long-read sequencing have emerged over the past 2 years and, given the continuous advancement of the field, many more are likely to follow. In this Review, we survey recent developments in population-scale long-read sequencing, highlight potential challenges of a scaled-up approach and provide guidance regarding experimental design. We provide an overview of current long-read sequencing platforms, variant calling methodologies and approaches for de novo assemblies and reference-based mapping approaches. Furthermore, we summarize strategies for variant validation, genotyping and predicting functional impact and emphasize challenges remaining in achieving long-read sequencing at a population scale.
Collapse
Affiliation(s)
- Wouter De Coster
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|