1
|
Bahari Khasraghi L, Nouri M, Vazirzadeh M, Hashemipour N, Talebi M, Aghaei Zarch F, Majidpoor J, Kalhor K, Farnia P, Najafi S, Aghaei Zarch SM. MicroRNA-206 in human cancer: Mechanistic and clinical perspectives. Cell Signal 2023; 101:110525. [PMID: 36400383 DOI: 10.1016/j.cellsig.2022.110525] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs), small non-coding RNAs approximately 20-25 nt in length, play important roles via directly binding to the corresponding 3' UTR of target mRNAs. Recent research has shown that miRNAs cover a wide range of diseases, including several types of cancer. It is interesting to note that miR-206 operates as a tumor suppressor and is downregulated in abundant cancer types, such as breast cancer, lung cancer, colorectal cancer, and so forth. Interestingly, a growing number of studies have also reported that miR-206 could function as an oncogene and promote tumor cell proliferation. Thereby, miR-206 may act as either oncogenes or tumor suppressors under certain conditions. In addition, it was widely acknowledged that restoring tumor-suppressor miR-206 has emerged as an unconventional cancer therapy strategy. Therefore, miR-206 might be a newfangled procedure for achieving a more significant treatment outcome for cancer patients. This review summarizes the role of miR-206 in several cancer types and the contributions made between miR-206 and the diagnosis, treatment, and drug resistance of solid tumors.
Collapse
Affiliation(s)
- Leila Bahari Khasraghi
- 15 khordad Educational Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Morteza Nouri
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Vazirzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Mehrdad Talebi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Kambiz Kalhor
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, USA
| | - Poopak Farnia
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
García-Giménez JL, García-Trevijano ER, Avilés-Alía AI, Ibañez-Cabellos JS, Bovea-Marco M, Bas T, Pallardó FV, Viña JR, Zaragozá R. Identification of circulating miRNAs differentially expressed in patients with Limb-girdle, Duchenne or facioscapulohumeral muscular dystrophies. Orphanet J Rare Dis 2022; 17:450. [PMID: 36575500 PMCID: PMC9793535 DOI: 10.1186/s13023-022-02603-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Limb-girdle muscular dystrophy (LGMD) is a rare neuromuscular disease including a growing and heterogeneous number of subtypes with variable phenotype. Their clinical and histopathological characteristics frequently overlap with other neuromuscular dystrophies. Our goal was to identify, by a non-invasive method, a molecular signature including biochemical and epigenetic parameters with potential value for patient prognosis and stratification. RESULTS Circulating miRNome was obtained by smallRNA-seq in plasma from LGMD patients (n = 6) and matched-controls (n = 6). Data, validated by qPCR in LGMD samples, were also examined in other common muscular dystrophies: Duchenne (DMD) (n = 5) and facioscapulohumeral muscular dystrophy (FSHD) (n = 4). Additionally, biochemical and clinical parameters were analyzed. miRNome analysis showed that thirteen differentially expressed miRs could separate LGMD vs control group by hierarchical clustering. Most of differentially expressed miRs in LGMD patients were up-regulated (miR-122-5p, miR-122b-3p, miR-6511a-3p, miR-192-5p, miR-574-3p, mir-885-3p, miR-29a-3p, miR-4646-3p, miR-203a-3p and miR-203b-5p) whilst only three of sequenced miRs were significantly down-regulated (miR-19b-3p, miR-7706, miR-323b-3p) when compared to matched controls. Bioinformatic analysis of target genes revealed cell cycle, muscle tissue development, regeneration and senescence as the most affected pathways. Four of these circulating miRs (miR-122-5p, miR-192-5p, miR-19b-3p and miR-323b-3p), together with the myomiR miR-206, were further analysed by qPCR in LGMD, DMD and FSHD. The receiver operating characteristic curves (ROC) revealed high area under the curve (AUC) values for selected miRs in all groups, indicating that these miRs have good sensitivity and specificity to distinguish LGMD, DMD and FSHD patients from healthy controls. miR-122-5p, miR-192-5p and miR-323-3p were differentially expressed compared to matched-controls in all groups but apparently, each type of muscular dystrophy showed a specific pattern of miR expression. Finally, a strong correlation between miRs and biochemical data was only found in LGMD patients: while miR-192-5p and miR-122-5p negatively correlated with CK, miR-192-5p positively correlated with vitamin D3 and ALP. CONCLUSIONS Although limited by the small number of patients included in this study, we propose here a specific combination of circulating miR-122-5p/miR-192-5p/miR-323-3 and biochemical parameters as a potential molecular signature whose clinical value for LGMD patient prognosis and stratification should be further confirmed in a larger cohort of patients.
Collapse
Affiliation(s)
- José Luis García-Giménez
- grid.413448.e0000 0000 9314 1427Center for Biomedical Network Research On Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain ,grid.429003.c0000 0004 7413 8491INCLIVA Health Research Institute, Valencia, Spain ,grid.5338.d0000 0001 2173 938XDepartment of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain ,EpiDisease S.L. (Spin-Off CIBERER), Valencia, Spain
| | - Elena R. García-Trevijano
- grid.429003.c0000 0004 7413 8491INCLIVA Health Research Institute, Valencia, Spain ,grid.5338.d0000 0001 2173 938XDepartment of Biochemistry and Molecular Biology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Ana I. Avilés-Alía
- grid.5338.d0000 0001 2173 938XDepartment of Biochemistry and Molecular Biology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | | | | | - Teresa Bas
- Institute for Health Research La Fe, IISLaFe, Valencia, Spain ,grid.84393.350000 0001 0360 9602Spine Surgery Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Federico V. Pallardó
- grid.413448.e0000 0000 9314 1427Center for Biomedical Network Research On Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain ,grid.429003.c0000 0004 7413 8491INCLIVA Health Research Institute, Valencia, Spain ,grid.5338.d0000 0001 2173 938XDepartment of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Juan R. Viña
- grid.429003.c0000 0004 7413 8491INCLIVA Health Research Institute, Valencia, Spain ,grid.5338.d0000 0001 2173 938XDepartment of Biochemistry and Molecular Biology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Rosa Zaragozá
- INCLIVA Health Research Institute, Valencia, Spain. .,Department of Human Anatomy and Embryology, Faculty of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibañez 15, 46010, Valencia, Spain.
| |
Collapse
|
3
|
Khalilian S, Hosseini Imani SZ, Ghafouri-Fard S. Emerging roles and mechanisms of miR-206 in human disorders: a comprehensive review. Cancer Cell Int 2022; 22:412. [PMID: 36528620 PMCID: PMC9758816 DOI: 10.1186/s12935-022-02833-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
As a member of the miR-1 family, miR-206 is located between IL-17 and PKHD1 genes in human. This miRNA has been shown to be involved in the pathogenic processes in a variety of human disorders including cancers, amyotrophic lateral sclerosis, Alzheimer's disease, atherosclerosis, bronchopulmonary dysplasia, coronary artery disease, chronic obstructive pulmonary disease, epilepsy, nonalcoholic fatty liver disease, Hirschsprung disease, muscular dystrophies, pulmonary arterial hypertension, sepsis and ulcerative colitis. In the current review, we summarize the role of miR-206 in both malignant and non-malignant situations and explain its possible therapeutic implications.
Collapse
Affiliation(s)
- Sheyda Khalilian
- grid.411600.2Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Hosseini Imani
- grid.411750.60000 0001 0454 365XDivision of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Esfahān, Iran
| | - Soudeh Ghafouri-Fard
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Costa R, Rodia MT, Pacilio S, Angelini C, Cenacchi G. LGMD D2 TNPO3-Related: From Clinical Spectrum to Pathogenetic Mechanism. Front Neurol 2022; 13:840683. [PMID: 35309568 PMCID: PMC8931187 DOI: 10.3389/fneur.2022.840683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMDs) are clinically and genetically heterogeneous diseases presenting with a wide clinical spectrum. Autosomal dominant LGMDs represent about 10–15% of LGMDs and include disorders due to defects of DNAJB6, transportin-3 (TNPO3), HNRNPDL, Calpain-3 (CAPN3), and Bethlem myopathy. This review article aims to describe the clinical spectrum of LGMD D2 TNPO3-related, a rare disease due to heterozygous mutation in the TNPO3 gene. TNPO3 encodes for transportin-3, which belongs to the importin beta family and transports into the nucleus serine/arginine-rich (SR) proteins, such as splicing factors, and HIV-1 proteins, thus contributing to viral infection. The purpose of this review is to present and compare the clinical features and the genetic and histopathological findings described in LGMD D2, performing a comparative analytical description of all the families and sporadic cases identified. Even if the causative gene and mutations of this disease have been identified, the pathogenic mechanisms are still an open issue; therefore, we will present an overview of the hypotheses that explain the pathology of LGMD D2 TNPO3-related.
Collapse
Affiliation(s)
- Roberta Costa
- Department of Biomedical and Neuromotor Sciences–DIBINEM, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Applied Biomedical Research Center–CRBA, IRCCS St. Orsola Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Maria Teresa Rodia
- Department of Biomedical and Neuromotor Sciences–DIBINEM, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Applied Biomedical Research Center–CRBA, IRCCS St. Orsola Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Serafina Pacilio
- Department of Biomedical and Neuromotor Sciences–DIBINEM, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Applied Biomedical Research Center–CRBA, IRCCS St. Orsola Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Corrado Angelini
- Laboratory for Neuromuscular Diseases, Campus Pietro d'Abano, University of Padova, Padova, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences–DIBINEM, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Applied Biomedical Research Center–CRBA, IRCCS St. Orsola Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
- *Correspondence: Giovanna Cenacchi
| |
Collapse
|
5
|
Li W, Li J, Yang Y. Recognition of the Possible miRNA-mRNA Controlling Network in Stroke by Bioinformatics Examination. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6745282. [PMID: 34938355 PMCID: PMC8687781 DOI: 10.1155/2021/6745282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/16/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Based on the latest research of WHO, it has been revealed that more than 15 million people suffer from stroke every year worldwide. Of these 15 million people, 6 million succumb to death, and 5 million get permanently disabled. This is the prime reason for the substantial economic burden on all parts of the world. METHODS These data have been obtained from the GEO database, and the GEO2R tool was used to find out the differentially expressed miRNAs (DEMs) between the stroke and normal patients' blood. FunRich and miRNet were considered to find potential upstream transcription factors and downstream target genes of candidate EMRs. Next, we use GO annotation and KEGG pathway enrichment. Target genes were analyzed with the help of the R software. Then, the STRING database and Cytoscape software were used to conduct PPI and DEM-hub gene networks. Finally, GSE58294 was used to estimate the hub gene expressions. RESULTS Six DEMs in total were selected out from GSE95204 and GSE117064 datasets. 663 DEMs' target genes were predicted, and NRF1, EGR1, MYC, YY1, E2F1, SP4, and SP1 were predicted as an upstream transcription factor for DEMs' target genes. Target genes of DEMs were primarily augmented in the PI3K-Akt signaling pathway and p53 signaling pathway. The network construction of DEM hygiene is potentially modulated by hsa-miR-3591-5p, hsa-miR-548as-3p, hsa-miR-206, and hsa-miR-4503 hub genes which were found among the top 10 of the hub genes. Among the top 10 hub genes, justification of CTNNB1, PTEN, ESR1, CCND1, KRAS, AKT1, CCND2, CDKN1B, and MYCN was constant with that in the GSE58294 dataset. CONCLUSION In summary, our research first constructs the miRNA-mRNA network in stroke, which probably renders an awakening purview into the pathogenesis and cure of stroke.
Collapse
Affiliation(s)
- Wei Li
- Emergency Department of Benxi Central Hospital, Benxi City, Liaoning Province 117000, China
| | - Jian Li
- Department of Thyroid Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, Liaoning Province 110801, China
| | - Yong Yang
- Emergency Department of Benxi Central Hospital, Benxi City, Liaoning Province 117000, China
| |
Collapse
|
6
|
Yedigaryan L, Sampaolesi M. Therapeutic Implications of miRNAs for Muscle-Wasting Conditions. Cells 2021; 10:cells10113035. [PMID: 34831256 PMCID: PMC8616481 DOI: 10.3390/cells10113035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that are mainly involved in translational repression by binding to specific messenger RNAs. Recently, miRNAs have emerged as biomarkers, relevant for a multitude of pathophysiological conditions, and cells can selectively sort miRNAs into extracellular vesicles for paracrine and endocrine effects. In the overall context of muscle-wasting conditions, a multitude of miRNAs has been implied as being responsible for the typical dysregulation of anabolic and catabolic pathways. In general, chronic muscle disorders are associated with the main characteristic of a substantial loss in muscle mass. Muscular dystrophies (MDs) are a group of genetic diseases that cause muscle weakness and degeneration. Typically, MDs are caused by mutations in those genes responsible for upholding the integrity of muscle structure and function. Recently, the dysregulation of miRNA levels in such pathological conditions has been reported. This revelation is imperative for both MDs and other muscle-wasting conditions, such as sarcopenia and cancer cachexia. The expression levels of miRNAs have immense potential for use as potential diagnostic, prognostic and therapeutic biomarkers. Understanding the role of miRNAs in muscle-wasting conditions may lead to the development of novel strategies for the improvement of patient management.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
7
|
Circulating Biomarkers in Neuromuscular Disorders: What Is Known, What Is New. Biomolecules 2021; 11:biom11081246. [PMID: 34439911 PMCID: PMC8393752 DOI: 10.3390/biom11081246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
The urgent need for new therapies for some devastating neuromuscular diseases (NMDs), such as Duchenne muscular dystrophy or amyotrophic lateral sclerosis, has led to an intense search for new potential biomarkers. Biomarkers can be classified based on their clinical value into different categories: diagnostic biomarkers confirm the presence of a specific disease, prognostic biomarkers provide information about disease course, and therapeutic biomarkers are designed to predict or measure treatment response. Circulating biomarkers, as opposed to instrumental/invasive ones (e.g., muscle MRI or nerve ultrasound, muscle or nerve biopsy), are generally easier to access and less “time-consuming”. In addition to well-known creatine kinase, other promising molecules seem to be candidate biomarkers to improve the diagnosis, prognosis and prediction of therapeutic response, such as antibodies, neurofilaments, and microRNAs. However, there are some criticalities that can complicate their application: variability during the day, stability, and reliable performance metrics (e.g., accuracy, precision and reproducibility) across laboratories. In the present review, we discuss the application of biochemical biomarkers (both validated and emerging) in the most common NMDs with a focus on their diagnostic, prognostic/predictive and therapeutic application, and finally, we address the critical issues in the introduction of new biomarkers.
Collapse
|
8
|
Ghafouri-Fard S, Abak A, Khademi S, Shoorei H, Bahroudi Z, Taheri M, Akbari Dilmaghani N. Functional roles of non-coding RNAs in atrophy. Biomed Pharmacother 2021; 141:111820. [PMID: 34146849 DOI: 10.1016/j.biopha.2021.111820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Atrophy is defined as a reduction in cell, organ, or tissue size after reaching their normal mature sizes because of loss of organelles, cytoplasmic compartments, and proteins. This process is also involved in the pathogenesis of human disorders. Inadequate nourishment, poor circulation, inadequate hormonal support, defects in nerve supply of the tissue, disproportionate induction of apoptosis in the tissue, and absence of exercise are some underlying causes of atrophy. Recently, several non-coding RNAs (ncRNAs) have been identified that regulate atrophy, thus participating in the pathobiology of related disorders such as neurodegenerative/ neuromuscular diseases, age-related muscle atrophy, and cardiac tissue atrophy. In the current review, we have focused on two classes of ncRNAs namely long ncRNAs (lncRNAs) and microRNAs (miRNAs) to unravel their participation in atrophy-associated disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Khademi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Special Issue "Genetic Advances in Neuromuscular Disorders: From Gene Identification to Gene Therapy". Genes (Basel) 2021; 12:genes12020242. [PMID: 33567614 PMCID: PMC7915748 DOI: 10.3390/genes12020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022] Open
|
10
|
Hangül C, Karaüzüm SB, Akkol EK, Demir-Dora D, Çetin Z, Saygılı Eİ, Evcili G, Sobarzo-Sánchez E. Promising Perspective to Facioscapulohumeral Muscular Dystrophy Treatment: Nutraceuticals and Phytochemicals. Curr Neuropharmacol 2021; 19:2276-2295. [PMID: 34315378 PMCID: PMC9185762 DOI: 10.2174/1570159x19666210726151924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 12/03/2022] Open
Abstract
Facioscapulohumeral Muscular Dystrophy (FSHD) is in the top three list of all dystrophies with an approximate 1:8000 incidence. It is not a life-threatening disease; however, the progression of the disease extends over being wheelchair bound. Despite some drug trials continuing, including DUX4 inhibition, TGF-ß inhibition and resokine which promote healthier muscle, there is not an applicable treatment option for FSHD today. Still, there is a need for new agents to heal, stop or at least slow down muscle wasting. Current FSHD studies involving nutraceuticals as vitamin C, vitamin E, coenzyme Q10, zinc, selenium, and phytochemicals as curcumin or genistein, daidzein flavonoids provide promising treatment strategies. In this review, we present the clinical and molecular nature of FSHD and focus on nutraceuticals and phytochemicals that may alleviate FSHD. In the light of the association of impaired pathophysiological FSHD pathways with nutraceuticals and phytochemicals according to the literature, we present both studied and novel approaches that can contribute to FSHD treatment.
Collapse
Affiliation(s)
| | | | - Esra Küpeli Akkol
- Address correspondence to this author at the Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey; E-mail:
| | | | | | | | | | | |
Collapse
|