1
|
Crane R, Tebbe L, Mwoyosvi ML, Al-Ubaidi MR, Naash MI. Expression of the human usherin c.2299delG mutation leads to early-onset auditory loss and stereocilia disorganization. Commun Biol 2023; 6:933. [PMID: 37700068 PMCID: PMC10497539 DOI: 10.1038/s42003-023-05296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Usher syndrome (USH) is the leading cause of combined deafness and blindness, with USH2A being the most prevalent form. The mechanisms responsible for this debilitating sensory impairment remain unclear. This study focuses on characterizing the auditory phenotype in a mouse model expressing the c.2290delG mutation in usherin equivalent to human frameshift mutation c.2299delG. Previously we described how this model reproduces patient's retinal phenotypes. Here, we present the cochlear phenotype, showing that the mutant usherin, is expressed during early postnatal stages. The c.2290delG mutation results in a truncated protein that is mislocalized within the cell body of the hair cells. The knock-in model also exhibits congenital hearing loss that remains consistent throughout the animal's lifespan. Structurally, the stereocilia bundles, particularly in regions associated with functional hearing loss, are disorganized. Our findings shed light on the role of usherin in maintaining structural support, specifically in longer inner hair cell stereocilia, during development, which is crucial for proper bundle organization and hair cell function. Overall, we present a genetic mouse model with cochlear defects associated with the c.2290delG mutation, providing insights into the etiology of hearing loss and offering potential avenues for the development of effective therapeutic treatments for USH2A patients.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Lars Tebbe
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Maggie L Mwoyosvi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
2
|
Stephenson KAJ, Whelan L, Zhu J, Dockery A, Wynne NC, Cairns RM, Kirk C, Turner J, Duignan ES, O'Byrne JJ, Silvestri G, Kenna PF, Farrar GJ, Keegan DJ. Usher Syndrome on the Island of Ireland: A Genotype-Phenotype Review. Invest Ophthalmol Vis Sci 2023; 64:23. [PMID: 37466950 PMCID: PMC10362925 DOI: 10.1167/iovs.64.10.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Purpose Usher syndrome (USH) is a genetically heterogeneous group of autosomal recessive (AR) syndromic inherited retinal degenerations (IRDs) representing 50% of deaf-blindness. All subtypes include retinitis pigmentosa, sensorineural hearing loss, and vestibular abnormalities. Thorough phenotyping may facilitate genetic diagnosis and intervention. Here we report the clinical/genetic features of an Irish USH cohort. Methods USH patients were selected from the Irish IRD registry (Target 5000). Patients were examined clinically (deep-phenotyping) and genetically using a 254 IRD-associated gene target capture sequencing panel, USH2A exon, and whole genome sequencing. Results The study identified 145 patients (24.1% USH1 [n = 35], 73.8% USH2 [n = 107], 1.4% USH3 [n = 2], and 0.7% USH4 [n = 1]). A genetic diagnosis was reached in 82.1%, the majority (80.7%) being MYO7A or USH2A genotypes. Mean visual acuity and visual field (VF) were 0.47 ± 0.58 LogMAR and 31.3° ± 32.8°, respectively, at a mean age of 43 years. Legal blindness criteria were met in 40.7%. Cataract was present in 77.4%. ADGRV1 genotypes had the most VF loss, whereas USH2A patients had greater myopia and CDH23 had the most astigmatism. Variants absent from gnomAD non-Finnish Europeans and ClinVar represented more than 20% of the variants identified and were detected in ADGRV1, ARSG, CDH23, MYO7A, and USH2A. Conclusions USH is a genetically diverse group of AR IRDs that have a profound impact on affected individuals and their families. The prevalence and phenotype/genotype characteristics of USH in Ireland have, as yet, gone unreported. Understanding the genotype of Irish USH patients may guide clinical and genetic characterization facilitating access to existing/novel therapeutics.
Collapse
Affiliation(s)
- Kirk A J Stephenson
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Laura Whelan
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Julia Zhu
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Adrian Dockery
- Next Generation Sequencing Laboratory, Pathology Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Niamh C Wynne
- The Research Foundation, Royal Victoria Eye & Ear Hospital, Dublin, Ireland
| | - Rebecca M Cairns
- Ophthalmology Department, Belfast Health and Social Care Trust Hospitals, Belfast, Northern Ireland
| | - Claire Kirk
- Ophthalmology Department, Belfast Health and Social Care Trust Hospitals, Belfast, Northern Ireland
| | - Jacqueline Turner
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Emma S Duignan
- The Research Foundation, Royal Victoria Eye & Ear Hospital, Dublin, Ireland
| | - James J O'Byrne
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Giuliana Silvestri
- Ophthalmology Department, Belfast Health and Social Care Trust Hospitals, Belfast, Northern Ireland
| | - Paul F Kenna
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
- The Research Foundation, Royal Victoria Eye & Ear Hospital, Dublin, Ireland
| | - G Jane Farrar
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - David J Keegan
- Clinical Ophthalmic Genetics Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
3
|
Su T, Liang L, Zhang L, Wang J, Chen L, Su C, Cao J, Yu Q, Deng S, Chan HF, Tang S, Guo Y, Chen J. Retinal organoids and microfluidic chip-based approaches to explore the retinitis pigmentosa with USH2A mutations. Front Bioeng Biotechnol 2022; 10:939774. [PMID: 36185441 PMCID: PMC9524156 DOI: 10.3389/fbioe.2022.939774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a leading cause of vision impairment and blindness worldwide, with limited medical treatment options. USH2A mutations are one of the most common causes of non-syndromic RP. In this study, we developed retinal organoids (ROs) and retinal pigment epithelium (RPE) cells from induced pluripotent stem cells (iPSCs) of RP patient to establish a sustainable in vitro RP disease model. RT-qPCR, western blot, and immunofluorescent staining assessments showed that USH2A mutations induced apoptosis of iPSCs and ROs, and deficiency of the extracellular matrix (ECM) components. Transcriptomics and proteomics findings suggested that abnormal ECM-receptor interactions could result in apoptosis of ROs with USH2A mutations via the PI3K-Akt pathway. To optimize the culture conditions of ROs, we fabricated a microfluidic chip to co-culture the ROs with RPE cells. Our results showed that this perfusion system could efficiently improve the survival rate of ROs. Further, ECM components such as laminin and collagen IV of ROs in the RP group were upregulated compared with those maintained in static culture. These findings illustrate the potential of microfluidic chip combined with ROs technology in disease modelling for RP.
Collapse
Affiliation(s)
- Ting Su
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Liying Liang
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Lan Zhang
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jianing Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Luyin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Caiying Su
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jixing Cao
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Quan Yu
- Centric Laboratory, Medical College, Jinan University, Guangzhou, China
| | - Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | | | - Yonglong Guo
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Jiansu Chen, ; Yonglong Guo,
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Aier Eye Institute, Changsha, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
- *Correspondence: Jiansu Chen, ; Yonglong Guo,
| |
Collapse
|
4
|
Kremer H, del Castillo I. Genetics of Hearing Impairment. Genes (Basel) 2022; 13:genes13050852. [PMID: 35627237 PMCID: PMC9140334 DOI: 10.3390/genes13050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Hannie Kremer
- Hearing and Genes, Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ignacio del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
- Correspondence:
| |
Collapse
|