1
|
Mergener R, Nascimento LPC, Böttcher AK, Nunes MR, Zen PRG. What Can Really Be Considered a Syndrome? An Insight Based on 16p11.2 Microduplication. Cell Biochem Funct 2024; 42:e4121. [PMID: 39264303 DOI: 10.1002/cbf.4121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
What is the definition of Syndrome? Since the beginning of studies in genetics, certain terminologies have been created and used to define groups of diseases or alterations. With the advancement of knowledge and the emergence of new technologies, the use of basic concepts is being done in a mistaken or often confusing way. Because of this, revisiting and readjusting the old terms becomes imminent. Here, we explore these concepts and their use, through a literature compilation of an already well-defined genetic alteration (16q11.2 microduplication). We bring comparisons in clinical and molecular scope of the alteration itself and its diagnostic methods, to improve the report of cases, rescuing terminologies and their applicability nowadays.
Collapse
Affiliation(s)
- Rafaella Mergener
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Lívia Polisseni Cotta Nascimento
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Kalise Böttcher
- Undergraduate Program in Biomedical Science, UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcela Rodrigues Nunes
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Medical Genetics Resident, UFCSPA/Irmandade da Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ricardo Gazzola Zen
- Department of Clinical Medicine, Medical Genetics, UFCSPA/ISCMPA, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Romanowska J, Nustad HE, Page CM, Denault WRP, Lee Y, Magnus MC, Haftorn KL, Gjerdevik M, Novakovic B, Saffery R, Gjessing HK, Lyle R, Magnus P, Håberg SE, Jugessur A. The X-factor in ART: does the use of assisted reproductive technologies influence DNA methylation on the X chromosome? Hum Genomics 2023; 17:35. [PMID: 37085889 PMCID: PMC10122315 DOI: 10.1186/s40246-023-00484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Assisted reproductive technologies (ART) may perturb DNA methylation (DNAm) in early embryonic development. Although a handful of epigenome-wide association studies of ART have been published, none have investigated CpGs on the X chromosome. To bridge this knowledge gap, we leveraged one of the largest collections of mother-father-newborn trios of ART and non-ART (natural) conceptions to date to investigate sex-specific DNAm differences on the X chromosome. The discovery cohort consisted of 982 ART and 963 non-ART trios from the Norwegian Mother, Father, and Child Cohort Study (MoBa). To verify our results from the MoBa cohort, we used an external cohort of 149 ART and 58 non-ART neonates from the Australian 'Clinical review of the Health of adults conceived following Assisted Reproductive Technologies' (CHART) study. The Illumina EPIC array was used to measure DNAm in both datasets. In the MoBa cohort, we performed a set of X-chromosome-wide association studies ('XWASs' hereafter) to search for sex-specific DNAm differences between ART and non-ART newborns. We tested several models to investigate the influence of various confounders, including parental DNAm. We also searched for differentially methylated regions (DMRs) and regions of co-methylation flanking the most significant CpGs. Additionally, we ran an analogous model to our main model on the external CHART dataset. RESULTS In the MoBa cohort, we found more differentially methylated CpGs and DMRs in girls than boys. Most of the associations persisted after controlling for parental DNAm and other confounders. Many of the significant CpGs and DMRs were in gene-promoter regions, and several of the genes linked to these CpGs are expressed in tissues relevant for both ART and sex (testis, placenta, and fallopian tube). We found no support for parental DNAm-dependent features as an explanation for the observed associations in the newborns. The most significant CpG in the boys-only analysis was in UBE2DNL, which is expressed in testes but with unknown function. The most significant CpGs in the girls-only analysis were in EIF2S3 and AMOT. These three loci also displayed differential DNAm in the CHART cohort. CONCLUSIONS Genes that co-localized with the significant CpGs and DMRs associated with ART are implicated in several key biological processes (e.g., neurodevelopment) and disorders (e.g., intellectual disability and autism). These connections are particularly compelling in light of previous findings indicating that neurodevelopmental outcomes differ in ART-conceived children compared to those naturally conceived.
Collapse
Affiliation(s)
- Julia Romanowska
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
| | - Haakon E Nustad
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- DeepInsight, 0154, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - William R P Denault
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Yunsung Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria C Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristine L Haftorn
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Miriam Gjerdevik
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Boris Novakovic
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Håkon K Gjessing
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Robert Lyle
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Yan S, Wang Y, Chen Y, Yuan H, Kuang X, Hou D, Li X, Pan L, Huang G, He J, Wang T, Peng X. A novel UBE2A splice site variant causing intellectual disability type Nascimento. Clin Case Rep 2022; 10:e5990. [PMID: 35846913 PMCID: PMC9272217 DOI: 10.1002/ccr3.5990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022] Open
Abstract
X-linked intellectual disability type Nascimento (XLID) is a rare disease caused by variants in the ubiquitin-conjugating enzyme E2A gene (UBE2A). Patients with XLID have similar phenotypes, including speech impairments, severe intellectual disability, hearing loss, wide facies, synophrys, generalized hirsutism, and urogenital abnormalities. Till date, only two splice-site variants of the UBE2A gene have been observed in patients with X-linked ID type Nascimento. Here, we report the case of a Chinese boy with a syndrome clinically similar to XLID with speech impairment, severe intellectual disability, and moderate hearing loss. However, different characteristics were also present in the patient, including an inability to maintain his head in an upright posture. Both of the patient's palms have a single transverse palmar crease. Subsequent whole-exome sequencing revealed a novel splice site variant in UBE2A (c.241 + 1 G > A). Our study not only expands the variant spectrum and clinical characteristics of UBE2A deficiency syndrome but also provides clinical evidence for genetic diagnoses.
Collapse
Affiliation(s)
- Shuyuan Yan
- Changsha Maternal and Child Health Hospital Affiliated to Hunan Normal UniversityChangshaChina
| | - Yanling Wang
- Changsha Maternal and Child Health Hospital Affiliated to Hunan Normal UniversityChangshaChina
| | - Ying Chen
- Changsha Maternal and Child Health Hospital Affiliated to Hunan Normal UniversityChangshaChina
| | - Hongxia Yuan
- Changsha Maternal and Child Health Hospital Affiliated to Hunan Normal UniversityChangshaChina
| | - Xiaoni Kuang
- Changsha Maternal and Child Health Hospital Affiliated to Hunan Normal UniversityChangshaChina
| | - Da Hou
- Changsha Maternal and Child Health Hospital Affiliated to Hunan Normal UniversityChangshaChina
| | - Xueyi Li
- Changsha Maternal and Child Health Hospital Affiliated to Hunan Normal UniversityChangshaChina
| | - Linglin Pan
- Changsha Maternal and Child Health Hospital Affiliated to Hunan Normal UniversityChangshaChina
| | - Guangwen Huang
- Hunan Provincial Maternal and Child Health Care HospitalChangshaChina
| | - Jun He
- Changsha Maternal and Child Health Hospital Affiliated to Hunan Normal UniversityChangshaChina
| | - Tuanmei Wang
- Changsha Maternal and Child Health Hospital Affiliated to Hunan Normal UniversityChangshaChina
| | - Xiangwen Peng
- Changsha Maternal and Child Health Hospital Affiliated to Hunan Normal UniversityChangshaChina
| |
Collapse
|
4
|
Clinical, Immunological, and Genetic Findings in a Cohort of Patients with the DiGeorge Phenotype without 22q11.2 Deletion. J Clin Med 2022; 11:jcm11072025. [PMID: 35407632 PMCID: PMC8999496 DOI: 10.3390/jcm11072025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a primary immunodeficiency characterized by a broad and heterogeneous clinical presentation associated with various degrees of T-cell deficiency. We report the clinical, immunologic, and genetic findings of a cohort of eight patients presenting with a clinical phenotype that is highly suggestive of this syndrome but without the 22q11.2 deletion. The cardinal features of 22q11.2DS, such as congenital heart defects, hypoparathyroidism, and facial dysmorphisms, were observed in the majority of the patient cohort. The unusual features are described in detail. The immunologic assessment showed various degrees of immunodeficiency of the T-cell compartment, notably a reduction in the thymic output. Half of the patient cohort exhibited a reduction in total dendritic cells. Array comparative genomic hybridization (CGH) revealed six patients harboring copy number variations (CNVs) never reported in normal subjects. The gene content of these CNVs was carefully analyzed to understand the mechanisms leading to 22q11.2DS phenocopies. According to these results, we suggested that array-CGH should be used as a first-tier tool for patients resembling 22q11.2DS.
Collapse
|