1
|
Nagy A, Niu N, Ratner E, Hui P, Buza N. Novel FOXL2 Mutation in an Ovarian Adult Granulosa Cell Tumor: Report of a Case With Diagnostic and Clinicopathologic Implications. Int J Gynecol Pathol 2024; 43:631-636. [PMID: 38426544 DOI: 10.1097/pgp.0000000000001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Adult granulosa cell tumor, the most common malignant ovarian sex cord-stromal tumor, harbors the characteristic mutation c.402C>G (p.C134W) in the FOXL2 gene in ~90% to 95% of cases. To date, no other variants of FOXL2 mutations have been identified in these tumors. Here we report the first case of an adult granulosa cell tumor with a novel FOXL2 point mutation c.398C>T (p.A133V) presenting in a 64-year-old postmenopausal woman. The patient underwent total hysterectomy and bilateral salpingo-oophorectomy for atypical endometrial hyperplasia and gross examination revealed an incidental 3.2 cm right ovarian mass with a solid, bright yellow, homogeneous cut surface. Microscopically, ~30% of the tumor showed a nested growth pattern composed of uniform tumor cells with oval nuclei and a moderate amount of pale cytoplasm, while the remaining areas consisted of a bland storiform fibromatous stroma. Reticulin stain demonstrated loss of the individual pericellular network within the nested areas, while the pericellular staining pattern was retained in the background stromal component. FOXL2 sequencing analysis was performed in both components and revealed a c.398C>T (p.A133V) mutation in the nested component, whereas wild-type FOXL2 sequence was identified in the fibromatous stroma. Sections from the uterus showed a low-grade endometrioid endometrial adenocarcinoma with superficial myometrial invasion. The patient underwent adjuvant vaginal cuff brachytherapy for the endometrial carcinoma and is alive and well at 8 months follow-up. This case illustrates that new FOXL2 mutations may be detected in ovarian sex cord-stromal tumors with increasing use of routine molecular testing, adding to the complexity of the pathologic diagnosis. In the right morphologic and clinical context, a FOXL2 mutation-even if it is different from the dominant hotspot mutation c.402C>G (p.C134W)-can support the diagnosis of adult granulosa cell tumor.
Collapse
|
2
|
Smółka K, Perenc L, Pelc J, Smółka L, Szajnik K. Thyrotoxic Myopathy with Nonspecific Ophthalmopathy in a Two-Year-Old Child: Case Report and Literature Review. J Clin Med 2024; 13:6180. [PMID: 39458129 PMCID: PMC11508943 DOI: 10.3390/jcm13206180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Myopathies encompass a wide range of diseases with diverse etiologies, courses, and prognoses, and can be either genetic or acquired in nature. One of the rare causes of acquired myopathies in children is hyperthyroidism. Ocular manifestations of hyperthyroidism include proptosis (exophthalmos) and widening of the palpebral fissure. Conversely, ptosis may indicate co-existing myasthenia or primary or secondary myopathy. Methods: This study presents a case of a 2-year-old child exhibiting both ocular disorders-each in one eye-along with features of proximal myopathy associated with undiagnosed thyrotoxicosis. Results: To our knowledge, this unique presentation of thyrotoxicosis in a young child has not been previously reported. After appropriate treatment for thyrotoxicosis, the child's ocular and muscular symptoms showed improvement. Conclusions: Given that thyroid disorders can be a rare cause of both myopathy and ocular disorders in children, it is recommended that any child presenting with such symptoms undergo thyroid function screening tests.
Collapse
Affiliation(s)
- Katarzyna Smółka
- Department of Child Neurology and Pediatrics, Clinical Regional Hospital No2, 35-301 Rzeszów, Poland; (K.S.); (J.P.); (K.S.)
| | - Lidia Perenc
- Department of Child Neurology and Pediatrics, Clinical Regional Hospital No2, 35-301 Rzeszów, Poland; (K.S.); (J.P.); (K.S.)
- Institute of Health Sciences, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Joanna Pelc
- Department of Child Neurology and Pediatrics, Clinical Regional Hospital No2, 35-301 Rzeszów, Poland; (K.S.); (J.P.); (K.S.)
| | - Leon Smółka
- Department of Anatomy, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Konrad Szajnik
- Department of Child Neurology and Pediatrics, Clinical Regional Hospital No2, 35-301 Rzeszów, Poland; (K.S.); (J.P.); (K.S.)
| |
Collapse
|
3
|
Nie L, Wang X, Wang S, Hong Z, Wang M. Genetic insights into the complexity of premature ovarian insufficiency. Reprod Biol Endocrinol 2024; 22:94. [PMID: 39095891 PMCID: PMC11295921 DOI: 10.1186/s12958-024-01254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Premature Ovarian Insufficiency (POI) is a highly heterogeneous condition characterized by ovarian dysfunction in women occurring before the age of 40, representing a significant cause of female infertility. It manifests through primary or secondary amenorrhea. While more than half of POI cases are idiopathic, genetic factors play a pivotal role in all instances with known causes, contributing to approximately 20-25% of cases. This article comprehensively reviews the genetic factors associated with POI, delineating the primary candidate genes. The discussion delves into the intricate relationship between these genes and ovarian development, elucidating the functional consequences of diverse mutations to underscore the fundamental impact of genetic effects on POI. The identified genetic factors, encompassing gene mutations and chromosomal abnormalities, are systematically classified based on whether the resulting POI is syndromic or non-syndromic. Furthermore, this paper explores the genetic interplay between mitochondrial genes, such as Required for Meiotic Nuclear Division 1 homolog Gene (RMND1), Mitochondrial Ribosomal Protein S22 Gene (MRPS22), Leucine-rich Pentapeptide Repeat Gene (LRPPRC), and non-coding RNAs, including both microRNAs and Long non-coding RNAs, with POI. The insights provided serve to consolidate and enhance our understanding of the etiology of POI, contributing to establishing a theoretical foundation for diagnosing and treating POI patients, as well as for exploring the mechanisms underlying the disease.
Collapse
Affiliation(s)
- Linhang Nie
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- WuHan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, P.R. China
| | - Xiaojie Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Second Clinical Hospital of WuHan University, Wuhan, Hubei, P.R. China
| | - Songyuan Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- WuHan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, P.R. China
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
4
|
Lin ZB, Chen ZJ, Yang H, Ding XR, Li J, Pan AP, Sun HS, Yu AY, Chen SH. Expanded phenotypic spectrum of FOXL2 Variant c.672_701dup revealed by whole-exome sequencing in a rare blepharophimosis, ptosis, and epicanthus inversus syndrome family. BMC Ophthalmol 2023; 23:446. [PMID: 37932670 PMCID: PMC10629009 DOI: 10.1186/s12886-023-03189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
INTRODUCTION Blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES) is a rare genetic disease with diverse ocular malformations. This study aimed to investigate the disease-causing gene in members of a BPES pedigree presenting with the rare features of anisometropia, unilateral pathologic myopia (PM), and congenital cataracts. METHODS The related BPES patients underwent a comprehensive ocular examination. Next, whole-exome sequencing (WES) was performed to screen for the disease-causing genetic variants. A step-wise variant filtering was performed to select candidate variants combined with the annotation of the variant's pathogenicity, which was assessed using several bioinformatic approaches. Co-segregation analysis and Sanger sequencing were then conducted to validate the candidate variant. RESULTS The variant c.672_701dup in FOXL2 was identified to be the disease-causing variant in this rare BPES family. Combined with clinical manifestations, the two affected individuals were diagnosed with type II BPES. CONCLUSION This study uncovered the variant c.672_701dup in FOXL2 as a disease causal variant in a rare-presenting BPES family with anisometropia, unilateral pathogenic myopia, and/or congenital cataracts, thus expanding the phenotypic spectrum of FOXL2.
Collapse
Affiliation(s)
- Zhi-Bo Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhen-Ji Chen
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Hui Yang
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing-Ru Ding
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jin Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - An-Peng Pan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hai-Sen Sun
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - A-Yong Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shi-Hao Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
5
|
Yang X, Yang L. Current understanding of the genomic abnormities in premature ovarian failure: chance for early diagnosis and management. Front Med (Lausanne) 2023; 10:1194865. [PMID: 37332766 PMCID: PMC10274511 DOI: 10.3389/fmed.2023.1194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Premature ovarian failure (POF) is an insidious cause of female infertility and a devastating condition for women. POF also has a strong familial and heterogeneous genetic background. Management of POF is complicated by the variable etiology and presentation, which are generally characterized by abnormal hormone levels, gene instability and ovarian dysgenesis. To date, abnormal regulation associated with POF has been found in a small number of genes, including autosomal and sex chromosomal genes in folliculogenesis, granulosa cells, and oocytes. Due to the complex genomic contributions, ascertaining the exact causative mechanisms has been challenging in POF, and many pathogenic genomic characteristics have yet to be elucidated. However, emerging research has provided new insights into genomic variation in POF as well as novel etiological factors, pathogenic mechanisms and therapeutic intervention approaches. Meanwhile, scattered studies of transcriptional regulation revealed that ovarian cell function also depends on specific biomarker gene expression, which can influence protein activities, thus causing POF. In this review, we summarized the latest research and issues related to the genomic basis for POF and focused on insights gained from their biological effects and pathogenic mechanisms in POF. The present integrated studies of genomic variants, gene expression and related protein abnormalities were structured to establish the role of etiological genes associated with POF. In addition, we describe the design of some ongoing clinical trials that may suggest safe, feasible and effective approaches to improve the diagnosis and therapy of POF, such as Filgrastim, goserelin, resveratrol, natural plant antitoxin, Kuntai capsule et al. Understanding the candidate genomic characteristics in POF is beneficial for the early diagnosis of POF and provides appropriate methods for prevention and drug treatment. Additional efforts to clarify the POF genetic background are necessary and are beneficial for researchers and clinicians regarding genetic counseling and clinical practice. Taken together, recent genomic explorations have shown great potential to elucidate POF management in women and are stepping from the bench to the bedside.
Collapse
Affiliation(s)
- Xu Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Chen M, Jiang H, Zhang C. Selected Genetic Factors Associated with Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:ijms24054423. [PMID: 36901862 PMCID: PMC10002966 DOI: 10.3390/ijms24054423] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is a heterogeneous disease resulting from non-functional ovaries in women before the age of 40. It is characterized by primary amenorrhea or secondary amenorrhea. As regards its etiology, although many POI cases are idiopathic, menopausal age is a heritable trait and genetic factors play an important role in all POI cases with known causes, accounting for approximately 20% to 25% of cases. This paper reviews the selected genetic causes implicated in POI and examines their pathogenic mechanisms to show the crucial role of genetic effects on POI. The genetic factors that can be found in POI cases include chromosomal abnormalities (e.g., X chromosomal aneuploidies, structural X chromosomal abnormalities, X-autosome translocations, and autosomal variations), single gene mutations (e.g., newborn ovary homeobox gene (NOBOX), folliculogenesis specific bHLH transcription factor (FIGLA), follicle-stimulating hormone receptor (FSHR), forkhead box L2 (FOXL2), bone morphogenetic protein 15 (BMP15), etc., as well as defects in mitochondrial functions and non-coding RNAs (small ncRNAs and long ncRNAs). These findings are beneficial for doctors to diagnose idiopathic POI cases and predict the risk of POI in women.
Collapse
Affiliation(s)
- Mengchi Chen
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Haotian Jiang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
7
|
Alkhairy S, Saeed H, Saeed S. Blepharophimosis, Ptosis, and Epicanthus Inversus Syndrome: A Simple Remedy for Challenging Cases. Cureus 2022; 14:e27432. [PMID: 36051713 PMCID: PMC9420221 DOI: 10.7759/cureus.27432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
A 14-year-old male presented to the outpatient department of ophthalmology with complaints of visual impairment. The patient was assessed with a detailed history and physical examination. Marked amblyopia was observed on inspection, and his best-corrected vision was 6/36 in both eyes with no further improvement. Both the anterior and posterior segments of the eyes were normal. A diagnosis of blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES) was suspected. Surgery was initiated in two stages, with the first stage utilizing Mustarde's double Z-plasty to correct the epicanthus inversus and telecanthus. The second stage was done three months later, involving a tarsofrontalis sling with prolene sutures to correct ptosis. The success of this operation speaks to the efficacy of a two-stage procedure for remedying a syndrome as complex as BPES.
Collapse
|
8
|
Meng T, Zhang W, Zhang R, Li J, Gao Y, Qin Y, Jiao X. Ovarian Reserve and ART Outcomes in Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome Patients With FOXL2 Mutations. Front Endocrinol (Lausanne) 2022; 13:829153. [PMID: 35574016 PMCID: PMC9097277 DOI: 10.3389/fendo.2022.829153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To characterize the status of ovarian reserve and ART outcomes in BPES women and provide informative reference for clinical diagnosis and treatment. Methods Twenty-one women with BPES were screened for mutations in the FOXL2 gene and underwent assisted reproductive technology (ART) treatment. Indicators for ovarian reserve and ART outcomes were compared between patients with and without FOXL2 mutations. Additionally, ART outcomes were compared among patients with different subtypes of FOXL2 mutations. Results A total of 13 distinct heterozygous variants in the FOXL2 gene were identified in 80.95% of BPES women, including 4 novel mutations with plausible pathogenicity (c.173_175dup, c.481C>T, c.576del and c.675_714del). Compared to non-mutation group, patients with FOXL2 mutations had elevated levels of FSH (P=0.007), decreased AMH levels (P=0.012) and less AFC (P=0.015). They also had worse ART outcomes with large amount of Gn dosage (P=0.008), fewer oocytes (P=0.001), Day3 good quality embryos (P=0.001) and good quality blastocysts (P=0.037), and a higher cancellation rate (P=0.272). High heterogeneity of ART outcomes existed in BPES patients with different FOXL2 mutation types. Conclusions BPES patients with FOXL2 mutations had diminished ovarian reserve and adverse ART outcomes. The genotype-reproductive phenotype correlations were highly heterogeneous and cannot be generalized. Genetic counseling for fertility planning and preimplantation or prenatal genetic diagnosis to reduce offspring inheritance are recommended.
Collapse
Affiliation(s)
- Tingting Meng
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Wenzhe Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Rongrong Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Jie Li
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yuan Gao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Xue Jiao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Suzhou Research Institute, Shandong University, Jinan, China
| |
Collapse
|
9
|
Cheng T, Yuan X, Yuan S, Zhu J, Tang S, Zhang Y. ITGB5 mutation discovered in a Chinese family with blepharophimosis-ptosis-epicanthus inversus syndrome. Open Life Sci 2021; 16:1268-1277. [PMID: 34966851 PMCID: PMC8665901 DOI: 10.1515/biol-2021-0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/28/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022] Open
Abstract
Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is a rare autosomal-dominant genetic disorder, and mutations in the forkhead box L2 (FOXL2) gene are one of the major genetic causes. As this study shows, there are many patients with BPES who do not have FOXL2 mutations, as the screening results in all family members were negative. Using whole-exome sequence analysis, we discovered another possible mutational cause of BPES in integrin subunit beta 5 (ITGB5). The ITGB5 mutation (c.608T>C, p.Ile203Thr) appears in the base sequence of all BPES+ patients in this family, and it appears to be a three-generation-inherited mutation. It can cause changes in base sequence and protein function, and there may be cosegregation of disease phenotypes. ITGB5 is located on the long arm of chromosome three (3q21.2) and is close to the known pathogenic gene FOXL2 (3q23). This study is the first to report ITGB5 mutations in BPES, and we speculate that it may be directly involved in the pathogenesis of BPES or indirectly through the regulation of FOXL2.
Collapse
Affiliation(s)
- Tianling Cheng
- Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Xiaobin Yuan
- Department of Disease Control and Prevention, Qingdao Hospital of Traditional Chinese Medicine, Qingdao, Shandong, 266000, China
| | - Shaopeng Yuan
- Department of Research and Development, Beijing Shunlei Technology Co., Ltd, Beijing, 100000, China
| | - Jianying Zhu
- Zibo Yimei Plastic Surgery Hospital, Zibo, Shandong, 255000, China
| | - Shengjian Tang
- Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Yujie Zhang
- Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong, 261000, China
| |
Collapse
|
10
|
Paprocka J, Nowak M, Nieć M, Janik I, Rydzanicz M, Robert Ś, Klaniewska M, Rutkowska K, Płoski R, Jezela-Stanek A. Case Report: Blepharophimosis and Ptosis as Leading Dysmorphic Features of Rare Congenital Malformation Syndrome With Developmental Delay - New Cases With TRAF7 Variants. Front Med (Lausanne) 2021; 8:708717. [PMID: 34513876 PMCID: PMC8428514 DOI: 10.3389/fmed.2021.708717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
Germline variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) gene have recently been described in about 50 patients with developmental delay and cardiac, facial, and digital anomalies (CAFDADD). We aimed to depict further the clinical and genetic spectrum associated with TRAF7 germline variants in two additional patients, broaden the mutational spectrum, and support the characteristic clinical variety to facilitate the diagnostics of the syndrome among physician involved in the evaluation of patients with developmental delay/congenital malformations.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Nowak
- Students' Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Maria Nieć
- Students' Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Izabela Janik
- Students' Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Śmigiel Robert
- Department of Paediatrics, Division of Propaedeutic of Paediatrics and Rare Disorders, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Klaniewska
- Department of Paediatrics, Division of Propaedeutic of Paediatrics and Rare Disorders, Wroclaw Medical University, Wroclaw, Poland
| | - Karolina Rutkowska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|