1
|
Larsson MNA, Morell Miranda P, Pan L, Başak Vural K, Kaptan D, Rodrigues Soares AE, Kivikero H, Kantanen J, Somel M, Özer F, Johansson AM, Storå J, Günther T. Ancient Sheep Genomes Reveal Four Millennia of North European Short-Tailed Sheep in the Baltic Sea Region. Genome Biol Evol 2024; 16:evae114. [PMID: 38795367 PMCID: PMC11162877 DOI: 10.1093/gbe/evae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 05/27/2024] Open
Abstract
Sheep are among the earliest domesticated livestock species, with a wide variety of breeds present today. However, it remains unclear how far back this diversity goes, with formal documentation only dating back a few centuries. North European short-tailed (NEST) breeds are often assumed to be among the oldest domestic sheep populations, even thought to represent relicts of the earliest sheep expansions during the Neolithic period reaching Scandinavia <6,000 years ago. This study sequenced the genomes (up to 11.6X) of five sheep remains from the Baltic islands of Gotland and Åland, dating from the Late Neolithic (∼4,100 cal BP) to historical times (∼1,600 CE). Our findings indicate that these ancient sheep largely possessed the genetic characteristics of modern NEST breeds, suggesting a substantial degree of long-term continuity of this sheep type in the Baltic Sea region. Despite the wide temporal spread, population genetic analyses show high levels of affinity between the ancient genomes and they also exhibit relatively high genetic diversity when compared to modern NEST breeds, implying a loss of diversity in most breeds during the last centuries associated with breed formation and recent bottlenecks. Our results shed light on the development of breeds in Northern Europe specifically as well as the development of genetic diversity in sheep breeds, and their expansion from the domestication center in general.
Collapse
Affiliation(s)
- Martin N A Larsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Pedro Morell Miranda
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Li Pan
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Damla Kaptan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | | | - Hanna Kivikero
- Department of Culture, University of Helsinki, Helsinki, Finland
| | - Juha Kantanen
- Natural Resources Institute Finland, Jokioinen, Finland
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Füsun Özer
- Department of Anthropology, Hacettepe University, Ankara, Turkey
| | - Anna M Johansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Storå
- Osteoarchaeological Research Laboratory, Stockholm University, Stockholm, Sweden
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Gudra D, Valdovska A, Kairisa D, Galina D, Jonkus D, Ustinova M, Viksne K, Kalnina I, Fridmanis D. Genomic diversity of the locally developed Latvian Darkheaded sheep breed. Heliyon 2024; 10:e31455. [PMID: 38807890 PMCID: PMC11130721 DOI: 10.1016/j.heliyon.2024.e31455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
The Latvian Darkheaded is the only locally developed sheep breed. The breed was formed at the beginning of the 20th century by crossing local coarse-wooled sheep with the British Shropshire and Oxfordshire breeds. The breed was later improved by adding Ile-de-France, Texel, German blackheads, and Finnsheep to achieve higher prolificacy and better meat quality. Previous studies have reported the Latvian Darkheaded sheep to be closely related to Estonian and Lithuanian Blackface breeds, according to microsatellite data. To expand our knowledge of the genetic resources of the Latvian Darkheaded breed, we conducted a whole-genome resequencing analysis on 40 native sheep. The investigation showed that local sheep harbor genetic diversity levels similar to those observed among other improved breeds of European origin, including Charollais and Suffolk. Genome-wide nucleotide diversity (π) in Latvian Darkheaded sheep was 3.91 × 10-3, whereas the average observed heterozygosity among the 40 animals was 0.267 and 0.438 within the subsample of unrelated individuals. The Ne has rapidly decreased to 200 ten generations ago with a recent drop to Ne 73 four generations ago. However, inbreeding levels based on runs of homozygosity were, on average, low, with FROH ranging between 0.016 and 0.059. The analysis of the genomic composition of the breed confirmed shared ancestry with sheep of British origin, reflecting the history of the breed. Nevertheless, Latvian Darkheaded sheep were genetically separable. The contemporary Latvian Darkheaded sheep population is genetically diverse with a low inbreeding rate. However, further development of breed management programs is necessary to prevent an increase in inbreeding, loss of genetic diversity, and depletion of breed-specific genetic resources, ensuring the preservation of the native Latvian Darkheaded sheep.
Collapse
Affiliation(s)
- Dita Gudra
- Latvian Biomedical Research and Study Centre, Riga, LV, 1067, Latvia
| | - Anda Valdovska
- Latvia University of Life Sciences and Technologies, Jelgava, LV, 3001, Latvia
| | - Daina Kairisa
- Latvia University of Life Sciences and Technologies, Jelgava, LV, 3001, Latvia
| | - Daiga Galina
- Latvia University of Life Sciences and Technologies, Jelgava, LV, 3001, Latvia
| | - Daina Jonkus
- Latvia University of Life Sciences and Technologies, Jelgava, LV, 3001, Latvia
| | - Maija Ustinova
- Latvian Biomedical Research and Study Centre, Riga, LV, 1067, Latvia
| | - Kristine Viksne
- Latvian Biomedical Research and Study Centre, Riga, LV, 1067, Latvia
| | - Ineta Kalnina
- Latvian Biomedical Research and Study Centre, Riga, LV, 1067, Latvia
| | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, Riga, LV, 1067, Latvia
| |
Collapse
|
3
|
Salek Ardestani S, Zandi MB, Vahedi SM, Janssens S. Population structure and genomic footprints of selection in five major Iranian horse breeds. Anim Genet 2022; 53:627-639. [PMID: 35919961 DOI: 10.1111/age.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
The genetic structure and characteristics of Iranian native breeds are yet to be comprehensibly investigated and studied. Therefore, we employed genomic information of 364 Iranian native horses representing the Asil (n = 109), Caspian (n = 40), Dareshuri (n = 44), Kurdish (n = 95), and Turkoman (n = 76) breeds to reveal the genetic structure and characteristics. For these and 19 other horse breeds, principal component analysis, Bayesian model-based, Neighbor-Net, and bootstrap-based TreeMix approaches were applied to investigate and compare their genetic structure. Additionally, three haplotype-based methods including haplotype homozygosity pooled, integrated haplotype score, and number of segregating sites by length were applied to trace genomic footprints of selection of Asil, Caspian, Dareshuri, Kurdish, and Turkoman groups. Then, the Mahalanobis distance based on the negative-log10 rank-based P-values was estimated based on the haplotype homozygosity pooled, integrated haplotype score, and number of segregating sites by length values. Asil, Caspian, Dareshuri, Kurdish, and Turkoman can be categorized into five different genetic clusters. Based on the top 1% of Mahalanobis distance based on the negative-log10 rank-based P-values of SNPs, we identified 24 SNPs formerly reported to be associated with different traits and >100 genes undergoing selection pressures in Asil, Caspian, Dareshuri, Kurdish, and Turkoman. The detected QTL undergoing selection pressures were associated with withers height, equine metabolic syndrome, overall body size, insect bite hypersensitivity, guttural pouch tympany, white markings, Rhodococcus equi infection, jumping test score, alternate gaits, and body weight traits. Our findings will aid to have a better perspective of the genetic characteristics and population structure of Asil, Caspian, Dareshuri, Kurdish, and Turkoman horses as Iranian native horse breeds.
Collapse
Affiliation(s)
| | | | - Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Steven Janssens
- Department Biosystems, Center Animal Breeding and Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Nazari F, Seyedabadi HR, Noshary A, Emamjomeh-Kashan N, Banabazi MH. A genome-wide scan for signatures of selection in Kurdish horse breed. J Equine Vet Sci 2022; 113:103916. [PMID: 35218903 DOI: 10.1016/j.jevs.2022.103916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
Abstract
The genetic diversity and genomic regions being under putative natural selection in Kurdish horse population were studied. The samples from 72 horses were genotyped by using GGP Equine 70K SNP arrays. The Ne Slope (NeS) analyses revealed that a sharp decline in Ne has probably occurred around four generations ago, and high frequency of ROH with 2-4 Mbp in length suggested that the inbreeding has probably occurred around 20 generations ago. The effective population size (Ne) was 104 horses up to three generations ago and the average inbreeding (FROH) was 0.047(±0.045). Using de-correlated composite of multiple selection signals (DCMS) and runs of homozygosity (ROH) analyses the genomic regions being under putative selection were detected. By using DCMS, a total of 148 significant SNP (FDR < 0.05) were identified, 40% of which were located on ECA9, where the greatest peak was observed. This genomic region harbors several known QTL which are associated with withers height (body size). Also significant genomic regions (FDR<0.05), harboring QTL associated with insect bite hypersensitivity (IBH), hair density and coat texture, alternate gaits, guttural pouch tympany and temperament were identified. By using outputs of ROH analyses, two hotspot regions (i.e. 30% of individuals was considered as threshold), were identified on ECA7 (50.11-54.36 Mbp) and ECA11 (26.10-29.07 Mbp) harboring QTL associated with withers height, alternate gait and IBH. In summary, the genomic regions being under putative natural selection which harbors known QTL associated with body size and IBH, among others, were introduced. Nevertheless, additional functional and comparative studies are necessary to corroborate their effect on the observed genetic and phenotypic diversity of the Kurdish horses.
Collapse
Affiliation(s)
- Faezeh Nazari
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid-Reza Seyedabadi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Alireza Noshary
- Department of Animal Science, Faculty of Agriculture, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Nasser Emamjomeh-Kashan
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamad-Hosein Banabazi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran; Department of animal breeding and genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), Uppsala 75007, Sweden
| |
Collapse
|