1
|
Tihanyi B, Maár K, Kis L, Gînguță A, Varga GIB, Kovács B, Schütz O, Pálfi G, Neparáczki E, Török T, Spekker O, Maróti Z, Berthon W. 'But no living man am I': Bioarchaeological evaluation of the first-known female burial with weapon from the 10th-century-CE Carpathian Basin. PLoS One 2024; 19:e0313963. [PMID: 39591432 PMCID: PMC11594485 DOI: 10.1371/journal.pone.0313963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Female burials equipped with weapons, a topic of interest among scholars and the general public, remain rare occurrences in archaeological records. The interpretation of such cases requires an interdisciplinary approach and a comprehensive evaluation of the available evidence, particularly regarding the sex and potential lifestyle of the deceased. Consequently, data on specific populations, regions, and time periods remain scarce. For instance, no such case has been reported before concerning the 10th century CE of the Carpathian Basin, known as the Hungarian Conquest period. Our study focuses on an interdisciplinary investigation of a previously known burial, grave No. 63 from the 10th-century-CE cemetery of Sárrétudvari-Hízóföld (eastern Hungary), which represents a unique case with grave goods including jewelry typically associated with females and archery equipment traditionally linked to males. Through archeological, anthropological, and archaeogenetic analyses, we aim to determine if this case represents the first-known female burial with weapon from the 10th-century-CE Carpathian Basin. Despite the poor bone preservation, a factor limiting data recording and evaluation, all analyses consistently indicate that the skeletal remains belonged to a female individual. The burial customs, including weapon equipment composition show analogies with male counterparts in the series. In addition, the pattern of pathological and supposed activity-related changes observed on the bones may have resulted from regular physical activity during her lifetime. In summary, our findings support the identification of this case as the first known female burial with weapon from the 10th-century-CE Carpathian Basin.
Collapse
Affiliation(s)
- Balázs Tihanyi
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
- Department of Archaeology, University of Szeged, Szeged, Hungary
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
| | - Kitti Maár
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Luca Kis
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
| | - Alexandra Gînguță
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
| | - Gergely I. B. Varga
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
| | - Bence Kovács
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Oszkár Schütz
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - György Pálfi
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
| | - Endre Neparáczki
- Department of Genetics, University of Szeged, Szeged, Hungary
- Ancient and Modern Human Genomics Competence Centre, University of Szeged, Szeged, Hungary
| | - Tibor Török
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
- Ancient and Modern Human Genomics Competence Centre, University of Szeged, Szeged, Hungary
| | - Olga Spekker
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
- Ancient and Modern Human Genomics Competence Centre, University of Szeged, Szeged, Hungary
- Institute of Archaeological Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Maróti
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Pediatrics and Pediatric Health Center, University of Szeged, Szeged, Hungary
| | - William Berthon
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
- Chaire d’Anthropologie Biologique Paul Broca, École Pratique des Hautes Études (EPHE), Université Paris Sciences & Lettres (PSL), Paris, France
| |
Collapse
|
2
|
Borbély N, Dudás D, Tapasztó A, Dudás-Boda E, Csáky V, Szeifert B, Mende BG, Egyed B, Szécsényi-Nagy A, Pamjav H. Phylogenetic insights into the genetic legacies of Hungarian-speaking communities in the Carpathian Basin. Sci Rep 2024; 14:11480. [PMID: 38769390 PMCID: PMC11106325 DOI: 10.1038/s41598-024-61978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
This study focuses on exploring the uniparental genetic lineages of Hungarian-speaking minorities residing in rural villages of Baranja (Croatia) and the Zobor region (Slovakia). We aimed to identify ancestral lineages by examining genetic markers distributed across the entire mitogenome and on the Y-chromosome. This allowed us to discern disparities in regional genetic structures within these communities. By integrating our newly acquired genetic data from a total of 168 participants with pre-existing Eurasian and ancient DNA datasets, our goal was to enrich the understanding of the genetic history trajectories of Carpathian Basin populations. Our findings suggest that while population-based analyses may not be sufficiently robust to detect fine-scale uniparental genetic patterns with the sample sizes at hand, phylogenetic analysis of well-characterized Y-chromosomal Short Tandem Repeat (STR) data and entire mitogenome sequences did uncover multiple lineage ties to far-flung regions and eras. While the predominant portions of both paternal and maternal DNA align with the East-Central European spectrum, rarer subhaplogroups and lineages have unveiled ancient ties to both prehistoric and historic populations spanning Europe and Eastern Eurasia. This research augments the expansive field of phylogenetics, offering critical perspectives on the genetic constitution and heritage of the communities in East-Central Europe.
Collapse
Affiliation(s)
- Noémi Borbély
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Tóth Kálmán utca 4, Budapest, 1097, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Dániel Dudás
- Department of Reference Sample Analysis, Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Gyorskocsi u. 25, Budapest, 1027, Hungary
| | - Attila Tapasztó
- Department of Reference Sample Analysis, Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Gyorskocsi u. 25, Budapest, 1027, Hungary
| | - Eszter Dudás-Boda
- Department of Reference Sample Analysis, Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Gyorskocsi u. 25, Budapest, 1027, Hungary
| | - Veronika Csáky
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Tóth Kálmán utca 4, Budapest, 1097, Hungary
| | - Bea Szeifert
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Tóth Kálmán utca 4, Budapest, 1097, Hungary
| | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Tóth Kálmán utca 4, Budapest, 1097, Hungary
| | - Balázs Egyed
- Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Tóth Kálmán utca 4, Budapest, 1097, Hungary.
| | - Horolma Pamjav
- Department of Reference Sample Analysis, Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Gyorskocsi u. 25, Budapest, 1027, Hungary.
| |
Collapse
|
3
|
Li YC, Gao ZL, Liu KJ, Tian JY, Yang BY, Rahman ZU, Yang LQ, Zhang SH, Li CT, Achilli A, Semino O, Torroni A, Kong QP. Mitogenome evidence shows two radiation events and dispersals of matrilineal ancestry from northern coastal China to the Americas and Japan. Cell Rep 2023:112413. [PMID: 37164007 DOI: 10.1016/j.celrep.2023.112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Although it is widely recognized that the ancestors of Native Americans (NAs) primarily came from Siberia, the link between mitochondrial DNA (mtDNA) lineage D4h3a (typical of NAs) and D4h3b (found so far only in East China and Thailand) raises the possibility that the ancestral sources for early NAs were more variegated than hypothesized. Here, we analyze 216 contemporary (including 106 newly sequenced) D4h mitogenomes and 39 previously reported ancient D4h data. The results reveal two radiation events of D4h in northern coastal China, one during the Last Glacial Maximum and the other within the last deglaciation, which facilitated the dispersals of D4h sub-branches to different areas including the Americas and the Japanese archipelago. The coastal distributions of the NA (D4h3a) and Japanese lineages (D4h1a and D4h2), in combination with the Paleolithic archaeological similarities among Northern China, the Americas, and Japan, lend support to the coastal dispersal scenario of early NAs.
Collapse
Affiliation(s)
- Yu-Chun Li
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Zong-Liang Gao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Kai-Jun Liu
- Chengdu 23Mofang Biotechnology Co., Ltd., Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Jiao-Yang Tian
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Bin-Yu Yang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Zia Ur Rahman
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Su-Hua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Cheng-Tao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China.
| |
Collapse
|
4
|
Pamjav H, Fóthi Á, Dudás D, Tapasztó A, Krizsik V, Fóthi E. The paternal genetic legacy of Hungarian-speaking Rétköz (Hungary) and Váh valley (Slovakia) populations. Front Genet 2022; 13:977517. [PMID: 36324512 PMCID: PMC9619085 DOI: 10.3389/fgene.2022.977517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
One hundred and six Rétköz and 48 Váh valley samples were collected from the contact zones of Hungarian-Slovakian territories and were genotyped for Y-chromosomal haplotypes and haplogroups. The results were compared with contemporary and archaic data from published sources. The genetic composition of the Rétköz population from Hungary and the Váh valley population from Slovakia indicates different histories. In the Rétköz population, the paternal lineages that were also found in the Hungarian Conquerors, such as R1a-Z93, N-M46, Q-M242, and R1b-L23, were better preserved. These haplogroups occurred in 10% of the population. The population of the Váh valley, however, is characterized by the complete absence of these haplogroups. Our study did not detect a genetic link between the Váh valley population and the Hungarian Conquerors; the genetic composition of the Váh valley population is similar to that of the surrounding Indo-European populations. The Hungarian Rétköz males shared common haplotypes with ancient Xiongnu, ancient Avar, Caucasian Avar, Abkhazian, Balkarian, and Circassian males within haplogroups R1a-Z93, N1c-M46, and R1b-L23, indicating a common genetic footprint. Another difference between the two studied Hungarian populations can be concluded from the Fst-based MDS plot. The Váh valley, in the western part of the Hungarian-Slovakian contact zone, is genetically closer to the Western Europeans. In contrast, Rétköz is in the eastern part of that zone and therefore closer to the Eastern Europeans.
Collapse
Affiliation(s)
- Horolma Pamjav
- Department of Reference sample analysis, Institute of Forensic Genetics, Hungarian Institutes for Forensic Sciences, Budapest, Hungary
- *Correspondence: Horolma Pamjav, ; Erzsébet Fóthi,
| | - Ábel Fóthi
- Institute of Archaeogenomics, Research Centre for the Humanities, Budapest, Hungary
| | - Dániel Dudás
- Department of Reference sample analysis, Institute of Forensic Genetics, Hungarian Institutes for Forensic Sciences, Budapest, Hungary
- Departmant of Genetics, Eötvös Lorand University, Budapest, Hungary
| | - Attila Tapasztó
- Department of Reference sample analysis, Institute of Forensic Genetics, Hungarian Institutes for Forensic Sciences, Budapest, Hungary
| | - Virág Krizsik
- Institute of Archaeogenomics, Research Centre for the Humanities, Budapest, Hungary
| | - Erzsébet Fóthi
- Institute of Archaeogenomics, Research Centre for the Humanities, Budapest, Hungary
- *Correspondence: Horolma Pamjav, ; Erzsébet Fóthi,
| |
Collapse
|
5
|
Szeifert B, Gerber D, Csáky V, Langó P, Stashenkov DA, Khokhlov AA, Sitdikov AG, Gazimzyanov IR, Volkova EV, Matveeva NP, Zelenkov AS, Poshekhonova OE, Sleptsova AV, Karacharov KG, Ilyushina VV, Konikov BA, Sungatov FA, Kolonskikh AG, Botalov SG, Grudochko IV, Komar O, Egyed B, Mende BG, Türk A, Szécsényi-Nagy A. Tracing genetic connections of ancient Hungarians to the 6th-14th century populations of the Volga-Ural region. Hum Mol Genet 2022; 31:3266-3280. [PMID: 35531973 PMCID: PMC9523560 DOI: 10.1093/hmg/ddac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Most of the early Hungarian tribes originated from the Volga-Kama and South-Ural regions, where they were composed of a mixed population based on historical, philological and archaeological data. We present here the uniparental genetic makeup of the mediaeval era of these regions that served as a melting pot for ethnic groups with different linguistic and historical backgrounds. Representing diverse cultural contexts, the new genetic data originate from ancient proto-Ob-Ugric people from Western Siberia (6th-13th century), the pre-Conquest period and subsisting Hungarians from the Volga-Ural region (6th-14th century) and their neighbours. By examining the eastern archaeology traits of Hungarian prehistory, we also study their genetic composition and origin in an interdisciplinary framework. We analyzed 110 deep-sequenced mitogenomes and 42 Y-chromosome haplotypes from 18 archaeological sites in Russia. The results support the studied groups' genetic relationships regardless of geographical distances, suggesting large-scale mobility. We detected long-lasting genetic connections between the sites representing the Kushnarenkovo and Chiyalik cultures and the Carpathian Basin Hungarians and confirmed the Uralic transmission of several East Eurasian uniparental lineages in their gene pool. Based on phylogenetics, we demonstrate and model the connections and splits of the studied Volga-Ural and conqueror groups. Early Hungarians and their alliances conquered the Carpathian Basin around 890 AD. Re-analysis of the Hungarian conquerors' maternal gene pool reveals numerous surviving maternal relationships in both sexes; therefore, we conclude that men and women came to the Carpathian Basin together, and although they were subsequently genetically fused into the local population, certain eastern lineages survived for centuries.
Collapse
Affiliation(s)
- Bea Szeifert
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest 1097, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Dániel Gerber
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest 1097, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Veronika Csáky
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest 1097, Hungary
| | - Péter Langó
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest 1097, Hungary
- Faculty of Humanities and Social Sciences, Institute of Archaeological Sciences, Pázmány Péter Catholic University, Budapest 1088, Hungary
| | - Dmitrii A Stashenkov
- Samara Regional Museum of History and Local Lore named after P. V. Alabina, Samara 443041, Russia
| | - Aleksandr A Khokhlov
- Department of Biology, Ecology and Teaching Methods, Samara State University of Social Sciences and Education, Samara 443099, Russia
| | | | | | | | | | | | - Olga E Poshekhonova
- Tyumen Scientific Centre SB RAS, Institute of the Problems of Northern Development, Tyumen 625026, Russia
| | - Anastasiia V Sleptsova
- Tyumen Scientific Centre SB RAS, Institute of the Problems of Northern Development, Tyumen 625026, Russia
| | | | - Viktoria V Ilyushina
- Tyumen Scientific Centre SB RAS, Institute of the Problems of Northern Development, Tyumen 625026, Russia
| | - Boris A Konikov
- Omsk Popov Production Association Russia, Omsk 644009, Russia
| | - Flarit A Sungatov
- Institute of History, Language and Literature of Scientific Center in Ufa of Russian Academy of Science, Ufa 450054, Russia
| | - Alexander G Kolonskikh
- Institute of Ethnological Studies of R.G. Kuzeev, Ufa Scientific Center, Russian Academy of Sciences, Ufa 450077, Russia
| | - Sergei G Botalov
- South Ural Branch of the Institute of History and Archeology, Ural Branch of the Russian Academy of Sciences, Chelyabinsk 454080 Russia
- South Ural State University, Chelyabinsk 454080, Russia
| | - Ivan V Grudochko
- South Ural Branch of the Institute of History and Archeology, Ural Branch of the Russian Academy of Sciences, Chelyabinsk 454080 Russia
- South Ural State University, Chelyabinsk 454080, Russia
| | - Oleksii Komar
- Institute of Archaeology, National Academy of Sciences of Ukraine, Kyiv 04210, Ukraine
| | - Balázs Egyed
- Department of Genetics, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Balázs G Mende
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest 1097, Hungary
| | - Attila Türk
- Faculty of Humanities and Social Sciences, Institute of Archaeological Sciences, Pázmány Péter Catholic University, Budapest 1088, Hungary
- Early Hungarians Research Team, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest 1097, Hungary
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest 1097, Hungary
| |
Collapse
|
6
|
Maróti Z, Neparáczki E, Schütz O, Maár K, Varga GIB, Kovács B, Kalmár T, Nyerki E, Nagy I, Latinovics D, Tihanyi B, Marcsik A, Pálfi G, Bernert Z, Gallina Z, Horváth C, Varga S, Költő L, Raskó I, Nagy PL, Balogh C, Zink A, Maixner F, Götherström A, George R, Szalontai C, Szenthe G, Gáll E, Kiss AP, Gulyás B, Kovacsóczy BN, Gál SS, Tomka P, Török T. The genetic origin of Huns, Avars, and conquering Hungarians. Curr Biol 2022; 32:2858-2870.e7. [PMID: 35617951 DOI: 10.1016/j.cub.2022.04.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/10/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
Huns, Avars, and conquering Hungarians were migration-period nomadic tribal confederations that arrived in three successive waves in the Carpathian Basin between the 5th and 9th centuries. Based on the historical data, each of these groups are thought to have arrived from Asia, although their exact origin and relation to other ancient and modern populations have been debated. Recently, hundreds of ancient genomes were analyzed from Central Asia, Mongolia, and China, from which we aimed to identify putative source populations for the above-mentioned groups. In this study, we have sequenced 9 Hun, 143 Avar, and 113 Hungarian conquest period samples and identified three core populations, representing immigrants from each period with no recent European ancestry. Our results reveal that this "immigrant core" of both Huns and Avars likely originated in present day Mongolia, and their origin can be traced back to Xiongnus (Asian Huns), as suggested by several historians. On the other hand, the "immigrant core" of the conquering Hungarians derived from an earlier admixture of Mansis, early Sarmatians, and descendants of late Xiongnus. We have also shown that a common "proto-Ugric" gene pool appeared in the Bronze Age from the admixture of Mezhovskaya and Nganasan people, supporting genetic and linguistic data. In addition, we detected shared Hun-related ancestry in numerous Avar and Hungarian conquest period genetic outliers, indicating a genetic link between these successive nomadic groups. Aside from the immigrant core groups, we identified that the majority of the individuals from each period were local residents harboring "native European" ancestry.
Collapse
Affiliation(s)
- Zoltán Maróti
- Department of Archaeogenetics, Institute of Hungarian Research, 1041 Budapest, Hungary; Department of Pediatrics and Pediatric Health Center, University of Szeged, 6725 Szeged, Hungary
| | - Endre Neparáczki
- Department of Archaeogenetics, Institute of Hungarian Research, 1041 Budapest, Hungary; Department of Genetics, University of Szeged, 6726 Szeged, Hungary
| | - Oszkár Schütz
- Department of Genetics, University of Szeged, 6726 Szeged, Hungary
| | - Kitti Maár
- Department of Genetics, University of Szeged, 6726 Szeged, Hungary
| | - Gergely I B Varga
- Department of Archaeogenetics, Institute of Hungarian Research, 1041 Budapest, Hungary
| | - Bence Kovács
- Department of Archaeogenetics, Institute of Hungarian Research, 1041 Budapest, Hungary; Department of Genetics, University of Szeged, 6726 Szeged, Hungary
| | - Tibor Kalmár
- Department of Pediatrics and Pediatric Health Center, University of Szeged, 6725 Szeged, Hungary
| | - Emil Nyerki
- Department of Archaeogenetics, Institute of Hungarian Research, 1041 Budapest, Hungary; Department of Pediatrics and Pediatric Health Center, University of Szeged, 6725 Szeged, Hungary
| | - István Nagy
- SeqOmics Biotechnology Ltd., 6782 Mórahalom, Hungary; Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | | | - Balázs Tihanyi
- Department of Archaeogenetics, Institute of Hungarian Research, 1041 Budapest, Hungary; Department of Biological Anthropology, University of Szeged, 6726 Szeged, Hungary
| | - Antónia Marcsik
- Department of Biological Anthropology, University of Szeged, 6726 Szeged, Hungary
| | - György Pálfi
- Department of Biological Anthropology, University of Szeged, 6726 Szeged, Hungary
| | - Zsolt Bernert
- Department of Anthropology, Hungarian Natural History Museum, 1083 Budapest, Hungary
| | - Zsolt Gallina
- Ásatárs Ltd., 6000 Kecskemét, Hungary; Department of Archaeology, Institute of Hungarian Research, 1041 Budapest, Hungary
| | - Ciprián Horváth
- Department of Archaeology, Institute of Hungarian Research, 1041 Budapest, Hungary
| | | | - László Költő
- Rippl-Rónai Municipal Museum with Country Scope, 7400 Kaposvár, Hungary
| | - István Raskó
- Institute of Genetics, Biological Research Centre, 6726 Szeged, Hungary
| | | | - Csilla Balogh
- Department of Art History, Istanbul Medeniyet University, 34720 Istanbul, Turkey
| | - Albert Zink
- Institute for Mummy Studies, EURAC Research, 39100 Bolzano, Italy
| | - Frank Maixner
- Institute for Mummy Studies, EURAC Research, 39100 Bolzano, Italy
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University, 11418 Stockholm, Sweden
| | - Robert George
- Department of Archaeology and Classical Studies, Stockholm University, 11418 Stockholm, Sweden
| | - Csaba Szalontai
- Hungarian National Museum, Department of Archaeology, 1088 Budapest, Hungary
| | - Gergely Szenthe
- Hungarian National Museum, Department of Archaeology, 1088 Budapest, Hungary
| | - Erwin Gáll
- "Vasile Pârvan" Institute of Archaeology, 010667 Bucharest, Romania
| | - Attila P Kiss
- Faculty of Humanities and Social Sciences, Institute of Archaeology, Pázmány Péter Catholic University, 1088 Budapest, Hungary
| | - Bence Gulyás
- Institute of Archaeological Sciences, Eötvös Loránd University, 1088 Budapest, Hungary
| | | | | | - Péter Tomka
- Department of Archaeology, Rómer Flóris Museum of Art and History, 9021 Győr, Hungary
| | - Tibor Török
- Department of Archaeogenetics, Institute of Hungarian Research, 1041 Budapest, Hungary; Department of Genetics, University of Szeged, 6726 Szeged, Hungary.
| |
Collapse
|
7
|
Maternal Lineages of Gepids from Transylvania. Genes (Basel) 2022; 13:genes13040563. [PMID: 35456371 PMCID: PMC9032604 DOI: 10.3390/genes13040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
According to the written historical sources, the Gepids were a Germanic tribe that settled in the Carpathian Basin during the Migration Period. They were allies of the Huns, and an independent Gepid Kingdom arose after the collapse of the Hun Empire. In this period, the Carpathian Basin was characterized by so-called row-grave cemeteries. Due to the scarcity of historical and archaeological data, we have a poor knowledge of the origin and composition of these barbarian populations, and this is still a subject of debate. To better understand the genetic legacy of migration period societies, we obtained 46 full mitogenome sequences from three Gepid cemeteries located in Transylvania, Romania. The studied samples represent the Classical Gepidic period and illustrate the genetic make-up of this group from the late 5th and early 6th centuries AD, which is characterized by cultural markers associated with the Gepid culture in Transylvania. The genetic structure of the Gepid people is explored for the first time, providing new insights into the genetic makeup of this archaic group. The retrieved genetic data showed mainly the presence of Northwestern European mitochondrial ancient lineages in the Gepid group and all population genetic analyses reiterated the same genetic structure, showing that early ancient mitogenomes from Europe were the major contributors to the Gepid maternal genetic pool.
Collapse
|
8
|
Ancient and Archaic Genomes. Genes (Basel) 2021; 12:genes12091411. [PMID: 34573393 PMCID: PMC8470403 DOI: 10.3390/genes12091411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
|