1
|
Murray GM, Sessle BJ. Pain-sensorimotor interactions: New perspectives and a new model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100150. [PMID: 38327725 PMCID: PMC10847382 DOI: 10.1016/j.ynpai.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
How pain and sensorimotor behavior interact has been the subject of research and debate for many decades. This article reviews theories bearing on pain-sensorimotor interactions and considers their strengths and limitations in the light of findings from experimental and clinical studies of pain-sensorimotor interactions in the spinal and craniofacial sensorimotor systems. A strength of recent theories is that they have incorporated concepts and features missing from earlier theories to account for the role of the sensory-discriminative, motivational-affective, and cognitive-evaluative dimensions of pain in pain-sensorimotor interactions. Findings acquired since the formulation of these recent theories indicate that additional features need to be considered to provide a more comprehensive conceptualization of pain-sensorimotor interactions. These features include biopsychosocial influences that range from biological factors such as genetics and epigenetics to psychological factors and social factors encompassing environmental and cultural influences. Also needing consideration is a mechanistic framework that includes other biological factors reflecting nociceptive processes and glioplastic and neuroplastic changes in sensorimotor and related brain and spinal cord circuits in acute or chronic pain conditions. The literature reviewed and the limitations of previous theories bearing on pain-sensorimotor interactions have led us to provide new perspectives on these interactions, and this has prompted our development of a new concept, the Theory of Pain-Sensorimotor Interactions (TOPSMI) that we suggest gives a more comprehensive framework to consider the interactions and their complexity. This theory states that pain is associated with plastic changes in the central nervous system (CNS) that lead to an activation pattern of motor units that contributes to the individual's adaptive sensorimotor behavior. This activation pattern takes account of the biological, psychological, and social influences on the musculoskeletal tissues involved in sensorimotor behavior and on the plastic changes and the experience of pain in that individual. The pattern is normally optimized in terms of biomechanical advantage and metabolic cost related to the features of the individual's musculoskeletal tissues and aims to minimize pain and any associated sensorimotor changes, and thereby maintain homeostasis. However, adverse biopsychosocial factors and their interactions may result in plastic CNS changes leading to less optimal, even maladaptive, sensorimotor changes producing motor unit activation patterns associated with the development of further pain. This more comprehensive theory points towards customized treatment strategies, in line with the management approaches to pain proposed in the biopsychosocial model of pain.
Collapse
Affiliation(s)
- Greg M. Murray
- Discipline of Restorative and Reconstructive Dentistry, Sydney School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | - Barry J. Sessle
- Faculty of Dentistry and Temerty Faculty of Medicine Department of Physiology, and Centre for the Study of Pain, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
2
|
Bizjak DA, Zügel M, Treff G, Winkert K, Jerg A, Hudemann J, Mooren FC, Krüger K, Nieß A, Steinacker JM. Effects of Training Status and Exercise Mode on Global Gene Expression in Skeletal Muscle. Int J Mol Sci 2021; 22:ijms222212578. [PMID: 34830458 PMCID: PMC8674764 DOI: 10.3390/ijms222212578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to investigate differences in skeletal muscle gene expression of highly trained endurance and strength athletes in comparison to untrained individuals at rest and in response to either an acute bout of endurance or strength exercise. Endurance (ET, n = 8, VO2max 67 ± 9 mL/kg/min) and strength athletes (ST, n = 8, 5.8 ± 3.0 training years) as well as untrained controls (E-UT and S-UT, each n = 8) performed an acute endurance or strength exercise test. One day before testing (Pre), 30 min (30'Post) and 3 h (180'Post) afterwards, a skeletal muscle biopsy was obtained from the m. vastus lateralis. Skeletal muscle mRNA was isolated and analyzed by Affymetrix-microarray technology. Pathway analyses were performed to evaluate the effects of training status (trained vs. untrained) and exercise mode-specific (ET vs. ST) transcriptional responses. Differences in global skeletal muscle gene expression between trained and untrained were smaller compared to differences in exercise mode. Maximum differences between ET and ST were found between Pre and 180'Post. Pathway analyses showed increased expression of exercise-related genes, such as nuclear transcription factors (NR4A family), metabolism and vascularization (PGC1-α and VEGF-A), and muscle growth/structure (myostatin, IRS1/2 and HIF1-α. The most upregulated genes in response to acute endurance or strength exercise were the NR4A genes (NR4A1, NR4A2, NR4A3). The mode of acute exercise had a significant effect on transcriptional regulation Pre vs. 180'Post. In contrast, the effect of training status on human skeletal muscle gene expression profiles was negligible compared to strength or endurance specialization. The highest variability in gene expression, especially for the NR4A-family, was observed in trained individuals at 180'Post. Assessment of these receptors might be suitable to obtain a deeper understanding of skeletal muscle adaptive processes to develop optimized training strategies.
Collapse
Affiliation(s)
- Daniel A. Bizjak
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, University of Ulm, 89075 Ulm, Germany; (M.Z.); (G.T.); (K.W.); (A.J.); (J.M.S.)
- Correspondence: ; Tel.: +49-73150045368; Fax: +49-73150045301
| | - Martina Zügel
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, University of Ulm, 89075 Ulm, Germany; (M.Z.); (G.T.); (K.W.); (A.J.); (J.M.S.)
| | - Gunnar Treff
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, University of Ulm, 89075 Ulm, Germany; (M.Z.); (G.T.); (K.W.); (A.J.); (J.M.S.)
| | - Kay Winkert
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, University of Ulm, 89075 Ulm, Germany; (M.Z.); (G.T.); (K.W.); (A.J.); (J.M.S.)
| | - Achim Jerg
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, University of Ulm, 89075 Ulm, Germany; (M.Z.); (G.T.); (K.W.); (A.J.); (J.M.S.)
| | - Jens Hudemann
- Department of Sports Medicine, University Hospital Tübingen, 72074 Tübingen, Germany; (J.H.); (A.N.)
| | - Frank C. Mooren
- Department of Medicine, Faculty of Health, University of Witten/Herdecke, 58455 Witten, Germany;
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Gießen, 35394 Gießen, Germany;
| | - Andreas Nieß
- Department of Sports Medicine, University Hospital Tübingen, 72074 Tübingen, Germany; (J.H.); (A.N.)
| | - Jürgen M. Steinacker
- Division of Sports and Rehabilitation Medicine, Department of Internal Medicine II, University of Ulm, 89075 Ulm, Germany; (M.Z.); (G.T.); (K.W.); (A.J.); (J.M.S.)
| |
Collapse
|