1
|
Volkova NA, Romanov MN, Abdelmanova AS, Larionova PV, German NY, Vetokh AN, Shakhin AV, Volkova LA, Sermyagin AA, Anshakov DV, Fisinin VI, Griffin DK, Sölkner J, Brem G, McEwan JC, Brauning R, Zinovieva NA. Genome-Wide Association Study Revealed Putative SNPs and Candidate Genes Associated with Growth and Meat Traits in Japanese Quail. Genes (Basel) 2024; 15:294. [PMID: 38540354 PMCID: PMC10970133 DOI: 10.3390/genes15030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
The search for SNPs and candidate genes that determine the manifestation of major selected traits is one crucial objective for genomic selection aimed at increasing poultry production efficiency. Here, we report a genome-wide association study (GWAS) for traits characterizing meat performance in the domestic quail. A total of 146 males from an F2 reference population resulting from crossing a fast (Japanese) and a slow (Texas White) growing breed were examined. Using the genotyping-by-sequencing technique, genomic data were obtained for 115,743 SNPs (92,618 SNPs after quality control) that were employed in this GWAS. The results identified significant SNPs associated with the following traits at 8 weeks of age: body weight (nine SNPs), daily body weight gain (eight SNPs), dressed weight (33 SNPs), and weights of breast (18 SNPs), thigh (eight SNPs), and drumstick (three SNPs). Also, 12 SNPs and five candidate genes (GNAL, DNAJC6, LEPR, SPAG9, and SLC27A4) shared associations with three or more traits. These findings are consistent with the understanding of the genetic complexity of body weight-related traits in quail. The identified SNPs and genes can be used in effective quail breeding as molecular genetic markers for growth and meat characteristics for the purpose of genetic improvement.
Collapse
Affiliation(s)
- Natalia A. Volkova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.); (A.A.S.)
| | - Michael N. Romanov
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.); (A.A.S.)
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK;
| | - Alexandra S. Abdelmanova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.); (A.A.S.)
| | - Polina V. Larionova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.); (A.A.S.)
| | - Nadezhda Yu. German
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.); (A.A.S.)
| | - Anastasia N. Vetokh
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.); (A.A.S.)
| | - Alexey V. Shakhin
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.); (A.A.S.)
| | - Ludmila A. Volkova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.); (A.A.S.)
| | - Alexander A. Sermyagin
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.); (A.A.S.)
| | - Dmitry V. Anshakov
- Breeding and Genetic Center “Zagorsk Experimental Breeding Farm”—Branch of the Federal Research Center “All-Russian Poultry Research and Technological Institute”, Russian Academy of Sciences, Sergiev Posad 141311, Moscow Oblast, Russia;
| | - Vladimir I. Fisinin
- Federal Research Center “All-Russian Poultry Research and Technological Institute” of the Russian Academy of Sciences, Sergiev Posad 141311, Moscow Oblast, Russia;
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK;
| | - Johann Sölkner
- Institute of Livestock Sciences (NUWI), University of Natural Resources and Life Sciences Vienna, 1180 Vienna, Austria;
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - John C. McEwan
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand; (J.C.M.); (R.B.)
| | - Rudiger Brauning
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand; (J.C.M.); (R.B.)
| | - Natalia A. Zinovieva
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk 142132, Moscow Oblast, Russia; (N.A.V.); (A.S.A.); (P.V.L.); (N.Y.G.); (A.N.V.); (A.V.S.); (L.A.V.); (A.A.S.)
| |
Collapse
|
2
|
Haqani MI, Nakano M, Nagano AJ, Nakamura Y, Tsudzuki M. Association analysis of production traits of Japanese quail (Coturnix japonica) using restriction-site associated DNA sequencing. Sci Rep 2023; 13:21307. [PMID: 38042890 PMCID: PMC10693557 DOI: 10.1038/s41598-023-48293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023] Open
Abstract
This study was designed to perform an association analysis and identify SNP markers associated with production traits of Japanese quail using restriction-site-associated DNA sequencing. Weekly body weight data from 805 quail were collected from hatching to 16 weeks of age. A total number of 3990 eggs obtained from 399 female quail were used to assess egg quality traits. Egg-related traits were measured at the beginning of egg production (first stage) and at 12 weeks of age (second stage). Five eggs were analyzed at each stage. Traits, such as egg weight, egg length and short axes, eggshell strength and weight, egg equator thickness, yolk weight, diameter, and colour, albumen weight, age of first egg, total number of laid eggs, and egg production rate, were assessed. A total of 383 SNPs and 1151 associations as well as 734 SNPs and 1442 associations were identified in relation to quail production traits using general linear model (GLM) and mixed linear model (MLM) approaches, respectively. The GLM-identified SNPs were located on chromosomes 1-13, 15, 17-20, 24, 26-28, and Z, underlying phenotypic traits, except for egg and albumen weight at the first stage and yolk yellowness at the second stage. The MLM-identified SNPs were positioned on defined chromosomes associated with phenotypic traits except for the egg long axis at the second stage of egg production. Finally, 35 speculated genes were identified as candidate genes for the targeted traits based on their nearest positions. Our findings provide a deeper understanding and allow a more precise genetic improvement of production traits of Galliformes, particularly in Japanese quail.
Collapse
Affiliation(s)
- Mohammad Ibrahim Haqani
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan.
| | - Michiharu Nakano
- Faculty of Agriculture and Marine Sciences, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0017, Japan
| | - Yoshiaki Nakamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan
- Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan
| | - Masaoki Tsudzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan.
- Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan.
| |
Collapse
|
3
|
Goto T, Konno S, Konno M. Establishment of Wild-Derived Strains of Japanese Quail ( Coturnix japonica) in Field and Laboratory Experiments. BIOLOGY 2023; 12:1080. [PMID: 37626966 PMCID: PMC10451757 DOI: 10.3390/biology12081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Domestic quail are used as both farm and laboratory animals. As the wild ancestor of quails is "endangered," field studies are needed to conserve them. If wild-derived strains of quail are established, they will be unique genetic resources for both farm and laboratory animals. The purpose of the present study was to conduct a field study and create wild-derived quail strains using the breeding stocks in Tokachi, Hokkaido, Japan. Field observations from 2019 to 2022 indicate that wild quails migrate and stay at reproductive sites from late April to late October. Our estimations of the approximate ages of the observed and captured quails imply that adult males have intermittent reproductive opportunities from May to August. Morphological traits collected from adult and juvenile quails in the 2019-2022 population were similar to those previously reported for Japan's 1914 and 1970 populations. Using natural mating of captured wild males and domestic (Dom) females, we established the W50 and W75 strains, which possessed 50% and 75% genetic contributions from the wild stocks. These unique genetic resources can be applied for future conservation and experimental use to understand the domestication history and genetic basis of quantitative traits.
Collapse
Affiliation(s)
- Tatsuhiko Goto
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Satoshi Konno
- Volunteer Bander, Division of Avian Conservation, Yamashina Institute for Ornithology, Abiko 270-1145, Chiba, Japan
| | - Miwa Konno
- Volunteer Bander, Division of Avian Conservation, Yamashina Institute for Ornithology, Abiko 270-1145, Chiba, Japan
| |
Collapse
|
4
|
Quantitative trait loci for growth-related traits in Japanese quail (Coturnix japonica) using restriction-site associated DNA sequencing. Mol Genet Genomics 2021; 296:1147-1159. [PMID: 34251529 DOI: 10.1007/s00438-021-01806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
This study aimed to identify quantitative trait loci (QTLs) for growth-related traits by constructing a genetic linkage map based on single nucleotide polymorphism (SNP) markers in Japanese quail. A QTL mapping population of 277 F2 birds was obtained from an intercross between a male of a large-sized strain and three females of a normal-sized strain. Body weight (BW) was measured weekly from hatching to 16 weeks of age. Non-linear regression growth models of Weibull, Logistic, Gompertz, Richards, and Brody were analyzed, and growth curve parameters of Richards was selected as the best model to describe the quail growth curve of the F2 birds. Restriction-site associated DNA sequencing developed 125 SNP markers that were informative between their parental strains. The SNP markers were distributed on 16 linkage groups that spanned 795.9 centiMorgan (cM) with an average marker interval of 7.3 cM. QTL analysis of phenotypic traits revealed four main-effect QTLs. Detected QTLs were located on chromosomes 1 and 3 and were associated with BW from 4 to 16 weeks of age and asymptotic weight of Richards model at genome-wide significant at 1% or 5% level. No QTL was detected for BW from 0 to 3 weeks of age. This is the first report identified QTLs for asymptotic weight of the Richards parameter in Japanese quail. These results highlight that the combination of QTL studies and the RAD-seq method will aid future breeding programs identify genes underlying the QTL and the application of marker-assisted selection in the poultry industry, particularly the Japanese quail.
Collapse
|