1
|
Wang Y, Ding K, Li H, Kuang Y, Liang Z. Biography of Vitis genomics: recent advances and prospective. HORTICULTURE RESEARCH 2024; 11:uhae128. [PMID: 38966864 PMCID: PMC11220177 DOI: 10.1093/hr/uhae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/25/2024] [Indexed: 07/06/2024]
Abstract
The grape genome is the basis for grape studies and breeding, and is also important for grape industries. In the last two decades, more than 44 grape genomes have been sequenced. Based on these genomes, researchers have made substantial progress in understanding the mechanism of biotic and abiotic resistance, berry quality formation, and breeding strategies. In addition, this work has provided essential data for future pangenome analyses. Apart from de novo assembled genomes, more than six whole-genome sequencing projects have provided datasets comprising almost 5000 accessions. Based on these datasets, researchers have explored the domestication and origins of the grape and clarified the gene flow that occurred during its dispersed history. Moreover, genome-wide association studies and other methods have been used to identify more than 900 genes related to resistance, quality, and developmental phases of grape. These findings have benefited grape studies and provide some basis for smart genomic selection breeding. Moreover, the grape genome has played a great role in grape studies and the grape industry, and the importance of genomics will increase sharply in the future.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Kangyi Ding
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huayang Li
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangfu Kuang
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Haidian, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
2
|
Chen T, Xu T, Wang J, Zhang T, Yang J, Feng L, Song T, Yang J, Wu Y. Transcriptomic and free monoterpene analyses of aroma reveal that isopentenyl diphosphate isomerase inhibits monoterpene biosynthesis in grape (Vitis vinifera L.). BMC PLANT BIOLOGY 2024; 24:595. [PMID: 38914931 PMCID: PMC11197285 DOI: 10.1186/s12870-024-05306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Monoterpenes are among the most important volatile aromatic compounds contributing to the flavor and aroma of grapes and wine. However, the molecular basis of monoterpene biosynthesis has not yet been fully elucidated. RESULTS In our study, transcriptomics and gas chromatography-mass spectrometry (GC-MS) were used to mine candidate genes and transcription factors involved in monoterpene biosynthesis between high-monoterpene and zero-monoterpene table grape cultivars. We found that monoterpene biosynthesis was positively correlated by the expression of five genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (VvDXSs), one encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (VvHDR), three hydroxy-3-methylglutaryl-CoA synthases (VvHMGSs) and one mevalonate kinase (VvMVK), whereas the expression of one isopentenyl diphosphate isomerase (VvIDI) and one 3-hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) negatively correlated monoterpene biosynthesis. Of these genes, VvIDI was selected to validate its function in monoterpene accumulation through a transient overexpression experiment, and was shown to inhibit the biosynthesis of grape linalool and α-terpineol. Meanwhile, we found that a 64-amino acid extension sequence at the N-terminus can guide the VvIDI protein to target the chloroplast. CONCLUSIONS The findings of this study should help to guide future functional analysis of key genes as well as mining the potential regulatory mechanism of monoterpene biosynthesis in grapes and grape products.
Collapse
Affiliation(s)
- Tianchi Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Xu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Jinnan Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianye Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jin Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lixiao Feng
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tiefeng Song
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Yueyan Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China.
| |
Collapse
|
3
|
Carrara I, Terzi V, Ghizzoni R, Delbono S, Tumino G, Crespan M, Gardiman M, Francia E, Morcia C. A Molecular Toolbox to Identify and Quantify Grape Varieties: On the Trace of "Glera". Foods 2023; 12:3091. [PMID: 37628090 PMCID: PMC10453920 DOI: 10.3390/foods12163091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
A pillar of wine authenticity is the variety/ies used. Ampelographic descriptors and SSR markers, included in several national and international databases, are extensively used for varietal identification purposes. Recently, SNP markers have been proposed as useful for grape varietal identification and traceability. Our study has been directed toward the development of a molecular toolbox able to track grape varieties from the nursery to the must. Two complementary approaches were developed, exploiting SNP markers with two different technologies, i.e., a high-throughput platform for varietal identification and a digital PCR system for varietal quantification. As proof-of-concept, the toolbox was successfully applied to the identification and quantification of the "Glera" variety along the Prosecco wine production chain. The assays developed found their limits in commercial, aged wines.
Collapse
Affiliation(s)
- Ilaria Carrara
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy (R.G.); (S.D.); (C.M.)
| | - Valeria Terzi
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy (R.G.); (S.D.); (C.M.)
| | - Roberta Ghizzoni
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy (R.G.); (S.D.); (C.M.)
| | - Stefano Delbono
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy (R.G.); (S.D.); (C.M.)
| | - Giorgio Tumino
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| | - Manna Crespan
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Viale 28 Aprile 26, 31015 Conegliano, Italy; (M.C.); (M.G.)
| | - Massimo Gardiman
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Viale 28 Aprile 26, 31015 Conegliano, Italy; (M.C.); (M.G.)
| | - Enrico Francia
- Department of Life Science, Centre BIOGEST-SITEIA, University of Study of Modena and Reggio Emilia, Via Amendola, n. 2, 42122 Reggio Emilia, Italy;
| | - Caterina Morcia
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy (R.G.); (S.D.); (C.M.)
| |
Collapse
|
4
|
Tello J, Ibáñez J. Review: Status and prospects of association mapping in grapevine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111539. [PMID: 36410567 DOI: 10.1016/j.plantsci.2022.111539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Thanks to current advances in sequencing technologies, novel bioinformatics tools, and efficient modeling solutions, association mapping has become a widely accepted approach to unravel the link between genotype and phenotype diversity in numerous crops. In grapevine, this strategy has been used in the last decades to understand the genetic basis of traits of agronomic interest (fruit quality, crop yield, biotic and abiotic resistance), of special relevance nowadays to improve crop resilience to cope with future climate scenarios. Genome-wide association studies have identified many putative causative loci for different traits, some of them overlapping well-known causal genes identified by conventional quantitative trait loci studies in biparental progenies, and/or validated by functional approaches. In addition, candidate-gene association studies have been useful to pinpoint the causal mutation underlying phenotypic variation for several traits of high interest in breeding programs (like berry color, seedlessness, and muscat flavor), information that has been used to develop highly informative and useful markers already in use in marker-assisted selection processes. Thus, association mapping has proved to represent a valuable step towards high quality and sustainable grape production. This review summarizes current applications of association mapping in grapevine research and discusses future prospects in view of current viticulture challenges.
Collapse
Affiliation(s)
- Javier Tello
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño 26007, Spain.
| | - Javier Ibáñez
- Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de La Rioja), Logroño 26007, Spain
| |
Collapse
|
5
|
Vargas AM, Fernández-Pastor M, Castro FJ, Martínez MA, Gómez-Cifuentes A, Espinosa-Roldán F, Cabello F, Muñoz-Organero G, de Andrés MT. Strategy to minimize phenotyping in the selection of new table grape varieties. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235601030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Morphological evaluation of large progenies is a problem in plant breeding programs, because of the need for skilled labor capable of characterizing various descriptors in a large number of individuals ripening simultaneously. In addition, the maintenance of progenies in the field for evaluation involves an unsustainable consumption of resources that could be reduced. Marker-assisted selection (MAS) offers the possibility of accelerating the process with the consequent saving of resources. The aim of this work is to propose a methodology that minimizes the phenotyping work for thousands of individuals of these breeding programs. The methodology consists of analyzing the complete progeny with a limited number of markers (27 SSR (Simple Sequence Repeat)) and a reduced description of morphological characters on a so-called training collection (27 individuals) obtained with Mstrat software. With this strategy, it was possible to estimate traits such as berry skin color or seedlessness in a progeny of more than 2000 individuals with a probability of 90%, and to discard 50% of individuals without muscat linked alleles.
Collapse
|
6
|
Effects of Girdling and Foliar Fertilization with K on Physicochemical Parameters, Phenolic and Volatile Composition in ‘Hanxiangmi’ Table Grape. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Aroma is one of the most important indicators of grape quality. Girdling and foliar fertilization with K (K2O) are common agronomic practices applied to improve berry quality in grape production. However, little is known about its effect on the accumulation and biosynthesis of the entire aromatic profile. Our study was aimed to explore the influences of girdling and foliar fertilization with K (alone or in combination) on the general properties, phenolic composition, volatile free aroma compounds, spatial and temporal expression of terpene-related genes and sensory properties in ‘Hanxiangmi’ table grape. In this study, we found that girdling and foliar fertilization with K (alone or in combination) facilitated fruit enlargement and increased the accumulation of phenolic compounds in skin. The combination treatment of girdling and foliar fertilization with K significantly promoted the concentrations of total soluble solids (TSS) in the pulp and proanthocyanidins in the berry skin, and had a lower titratable acidity (TA) compared to those of the control. In contrast, girdling treatment alone increased the concentrations of titratable acidity. Volatile free aroma composition analysis revealed that the combination treatment increased the volatile compounds and concentrations significantly, most notably in terpenes, such as nerol, citronellol and linalool. Spatial and temporal expression analysis showed that the expression level of VvDXS was significantly correlated with linalool and total terpenes concentrations, as a result of which, we speculated that VvDXS is the candidate gene for the regulation of important grape terpenes. We hope that our results can direct farmers to better apply girdling and foliar fertilization with K in grape production.
Collapse
|