1
|
Puerto M, Shukla M, Bujosa P, Pérez-Roldán J, Torràs-Llort M, Tamirisa S, Carbonell A, Solé C, Puspo J, Cummings C, de Nadal E, Posas F, Azorín F, Rowley M. The zinc-finger protein Z4 cooperates with condensin II to regulate somatic chromosome pairing and 3D chromatin organization. Nucleic Acids Res 2024; 52:5596-5609. [PMID: 38520405 PMCID: PMC11162801 DOI: 10.1093/nar/gkae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Chromosome pairing constitutes an important level of genome organization, yet the mechanisms that regulate pairing in somatic cells and the impact on 3D chromatin organization are still poorly understood. Here, we address these questions in Drosophila, an organism with robust somatic pairing. In Drosophila, pairing preferentially occurs at loci consisting of numerous architectural protein binding sites (APBSs), suggesting a role of architectural proteins (APs) in pairing regulation. Amongst these, the anti-pairing function of the condensin II subunit CAP-H2 is well established. However, the factors that regulate CAP-H2 localization and action at APBSs remain largely unknown. Here, we identify two factors that control CAP-H2 occupancy at APBSs and, therefore, regulate pairing. We show that Z4, interacts with CAP-H2 and is required for its localization at APBSs. We also show that hyperosmotic cellular stress induces fast and reversible unpairing in a Z4/CAP-H2 dependent manner. Moreover, by combining the opposite effects of Z4 depletion and osmostress, we show that pairing correlates with the strength of intrachromosomal 3D interactions, such as active (A) compartment interactions, intragenic gene-loops, and polycomb (Pc)-mediated chromatin loops. Altogether, our results reveal new players in CAP-H2-mediated pairing regulation and the intimate interplay between inter-chromosomal and intra-chromosomal 3D interactions.
Collapse
Affiliation(s)
- Marta Puerto
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Mamta Shukla
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paula Bujosa
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Juan Pérez-Roldán
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Mònica Torràs-Llort
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Srividya Tamirisa
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Carme Solé
- Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Joynob Akter Puspo
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Eulàlia de Nadal
- Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Francesc Posas
- Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institute for Research in Biomedicine of Barcelona, IRB Barcelona. The Barcelona Institute of Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Guntur AR, Smith JE, Brahmandam A, DeBauche P, Cronmiller C, Lundell MJ. ZFH-2 is required for Drosophila ovarian follicle development and is expressed at the band/interband boundaries of polytene chromosomes. Dev Biol 2023; 504:1-11. [PMID: 37666353 DOI: 10.1016/j.ydbio.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The transcription factor ZFH-2 has well-documented roles in Drosophila neurogenesis and other developmental processes. Here we provide the first evidence that ZFH-2 has a role in oogenesis. We demonstrate that ZFH-2 is expressed in the wild-type ovary and that a loss of zfh-2 function produces a mutant ovary phenotype where egg chambers are reduced in number and fused. We also show that a loss of zfh-2 function can suppress a daughterless loss-of-function ovary phenotype suggesting a possible genetic relationship between these two genes in the ovary. We also show that ZFH-2 is located at the boundary between bands and interbands on polytene chromosomes and that at a subset of these sites ZFH-2 colocalizes with the insulator/promoter cofactor CP190.
Collapse
Affiliation(s)
- Ananya R Guntur
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - John E Smith
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA, 22904, USA
| | - Archana Brahmandam
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Phillip DeBauche
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Claire Cronmiller
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA, 22904, USA
| | - Martha J Lundell
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
3
|
Melnikova L, Golovnin A. Multiple Roles of dXNP and dADD1- Drosophila Orthologs of ATRX Chromatin Remodeler. Int J Mol Sci 2023; 24:16486. [PMID: 38003676 PMCID: PMC10671109 DOI: 10.3390/ijms242216486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The Drosophila melanogaster dADD1 and dXNP proteins are orthologues of the ADD and SNF2 domains of the vertebrate ATRX (Alpha-Thalassemia with mental Retardation X-related) protein. ATRX plays a role in general molecular processes, such as regulating chromatin status and gene expression, while dADD1 and dXNP have similar functions in the Drosophila genome. Both ATRX and dADD1/dXNP interact with various protein partners and participate in various regulatory complexes. Disruption of ATRX expression in humans leads to the development of α-thalassemia and cancer, especially glioma. However, the mechanisms that allow ATRX to regulate various cellular processes are poorly understood. Studying the functioning of dADD1/dXNP in the Drosophila model may contribute to understanding the mechanisms underlying the multifunctional action of ATRX and its connection with various cellular processes. This review provides a brief overview of the currently available information in mammals and Drosophila regarding the roles of ATRX, dXNP, and dADD1. It discusses possible mechanisms of action of complexes involving these proteins.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
4
|
Wang C, Zhao B. Epstein-Barr virus and host cell 3D genome organization. J Med Virol 2023; 95:e29234. [PMID: 37988227 PMCID: PMC10664867 DOI: 10.1002/jmv.29234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
The human genome is organized in an extremely complexed yet ordered way within the nucleus. Genome organization plays a critical role in the regulation of gene expression. Viruses manipulate the host machinery to influence host genome organization to favor their survival and promote disease development. Epstein-Barr virus (EBV) is a common human virus, whose infection is associated with various diseases, including infectious mononucleosis, cancer, and autoimmune disorders. This review summarizes our current knowledge of how EBV uses different strategies to control the cellular 3D genome organization to affect cell gene expression to transform normal cells into lymphoblasts.
Collapse
Affiliation(s)
- Chong Wang
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bo Zhao
- Department of Medicine, Division of Infectious Disease, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Melnikova L, Molodina V, Babosha V, Kostyuchenko M, Georgiev P, Golovnin A. The MADF-BESS Protein CP60 Is Recruited to Insulators via CP190 and Has Redundant Functions in Drosophila. Int J Mol Sci 2023; 24:15029. [PMID: 37834476 PMCID: PMC10573801 DOI: 10.3390/ijms241915029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Drosophila CP190 and CP60 are transcription factors that are associated with centrosomes during mitosis. CP190 is an essential transcription factor and preferentially binds to housekeeping gene promoters and insulators through interactions with architectural proteins, including Su(Hw) and dCTCF. CP60 belongs to a family of transcription factors that contain the N-terminal MADF domain and the C-terminal BESS domain, which is characterized by the ability to homodimerize. In this study, we show that the conserved CP60 region adjacent to MADF is responsible for interacting with CP190. In contrast to the well-characterized MADF-BESS transcriptional activator Adf-1, CP60 is recruited to most chromatin sites through its interaction with CP190, and the MADF domain is likely involved in protein-protein interactions but not in DNA binding. The deletion of the Map60 gene showed that CP60 is not an essential protein, despite the strong and ubiquitous expression of CP60 at all stages of Drosophila development. Although CP60 is a stable component of the Su(Hw) insulator complex, the inactivation of CP60 does not affect the enhancer-blocking activity of the Su(Hw)-dependent gypsy insulator. Overall, our results indicate that CP60 has an important but redundant function in transcriptional regulation as a partner of the CP190 protein.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| | - Varvara Molodina
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| | - Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia (P.G.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Margarita Kostyuchenko
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia (P.G.)
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| |
Collapse
|
6
|
Kyrchanova O, Ibragimov A, Postika N, Georgiev P, Schedl P. Boundary bypass activity in the abdominal-B region of the Drosophila bithorax complex is position dependent and regulated. Open Biol 2023; 13:230035. [PMID: 37582404 PMCID: PMC10427195 DOI: 10.1098/rsob.230035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Expression of Abdominal-B (Abd-B) in abdominal segments A5-A8 is controlled by four regulatory domains, iab-5-iab-8. Each domain has an initiator element (which sets the activity state), elements that maintain this state and tissue-specific enhancers. To ensure their functional autonomy, each domain is bracketed by boundary elements (Mcp, Fab-7, Fab-7 and Fab-8). In addition to blocking crosstalk between adjacent regulatory domains, the Fab boundaries must also have bypass activity so the relevant regulatory domains can 'jump over' intervening boundaries and activate the Abd-B promoter. In the studies reported here we have investigated the parameters governing bypass activity. We find that the bypass elements in the Fab-7 and Fab-8 boundaries must be located in the regulatory domain that is responsible for driving Abd-B expression. We suggest that bypass activity may also be subject to regulation.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
7
|
Kyrchanova O, Ibragimov A, Postika N, Georgiev P, Schedl P. Boundary Bypass Activity in the Abdominal-B Region of the Drosophila Bithorax Complex is Position Dependent and Regulated. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543971. [PMID: 37333165 PMCID: PMC10274778 DOI: 10.1101/2023.06.06.543971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Expression of Abdominal-B ( Abd-B ) in abdominal segments A5 - A8 is controlled by four regulatory domains, iab-5 - iab-8 . Each domain has an initiator element (which sets the activity state), elements that maintain this state and tissue-specific enhancers. To ensure their functional autonomy, each domain is bracketed by boundary elements ( Mcp , Fab-7 , Fab-7 and Fab-8 ). In addition to blocking crosstalk between adjacent regulatory domains, the Fab boundaries must also have bypass activity so the relevant regulatory domains can "jump over" intervening boundaries and activate the Abd-B promoter. In the studies reported here we have investigated the parameters governing bypass activity. We find that the bypass elements in the Fab-7 and Fab-8 boundaries must be located in the regulatory domain that is responsible for driving Abd-B expression. We suggest that bypass activity may also be subject to regulation. Summary Statement Boundaries separating Abd-B regulatory domains block crosstalk between domains and mediate their interactions with Abd-B . The latter function is location but not orientation dependent.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
8
|
Puerto M, Shukla M, Bujosa P, Perez-Roldan J, Tamirisa S, Solé C, de Nadal E, Posas F, Azorin F, Rowley MJ. Somatic chromosome pairing has a determinant impact on 3D chromatin organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534693. [PMID: 37034722 PMCID: PMC10081234 DOI: 10.1101/2023.03.29.534693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In the nucleus, chromatin is intricately structured into multiple layers of 3D organization important for genome activity. How distinct layers influence each other is not well understood. In particular, the contribution of chromosome pairing to 3D chromatin organization has been largely neglected. Here, we address this question in Drosophila, an organism that shows robust chromosome pairing in interphasic somatic cells. The extent of chromosome pairing depends on the balance between pairing and anti-pairing factors, with the anti-pairing activity of the CAP-H2 condensin II subunit being the best documented. Here, we identify the zinc-finger protein Z4 as a strong anti-pairer that interacts with and mediates the chromatin binding of CAP-H2. We also report that hyperosmotic cellular stress induces fast and reversible chromosome unpairing that depends on Z4/CAP-H2. And, most important, by combining Z4 depletion and osmostress, we show that chromosome pairing reinforces intrachromosomal 3D interactions. On the one hand, pairing facilitates RNAPII occupancy that correlates with enhanced intragenic gene-loop interactions. In addition, acting at a distance, pairing reinforces chromatin-loop interactions mediated by Polycomb (Pc). In contrast, chromosome pairing does not affect which genomic intervals segregate to active (A) and inactive (B) compartments, with only minimal effects on the strength of A-A compartmental interactions. Altogether, our results unveil the intimate interplay between inter-chromosomal and intra-chromosomal 3D interactions, unraveling the interwoven relationship between different layers of chromatin organization and the essential contribution of chromosome pairing.
Collapse
|
9
|
Andreyeva EN, Emelyanov AV, Nevil M, Sun L, Vershilova E, Hill CA, Keogh MC, Duronio RJ, Skoultchi AI, Fyodorov DV. Drosophila SUMM4 complex couples insulator function and DNA replication control. eLife 2022; 11:e81828. [PMID: 36458689 PMCID: PMC9917439 DOI: 10.7554/elife.81828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Asynchronous replication of chromosome domains during S phase is essential for eukaryotic genome function, but the mechanisms establishing which domains replicate early versus late in different cell types remain incompletely understood. Intercalary heterochromatin domains replicate very late in both diploid chromosomes of dividing cells and in endoreplicating polytene chromosomes where they are also underreplicated. Drosophila SNF2-related factor SUUR imparts locus-specific underreplication of polytene chromosomes. SUUR negatively regulates DNA replication fork progression; however, its mechanism of action remains obscure. Here, we developed a novel method termed MS-Enabled Rapid protein Complex Identification (MERCI) to isolate a stable stoichiometric native complex SUMM4 that comprises SUUR and a chromatin boundary protein Mod(Mdg4)-67.2. Mod(Mdg4) stimulates SUUR ATPase activity and is required for a normal spatiotemporal distribution of SUUR in vivo. SUUR and Mod(Mdg4)-67.2 together mediate the activities of gypsy insulator that prevent certain enhancer-promoter interactions and establish euchromatin-heterochromatin barriers in the genome. Furthermore, SuUR or mod(mdg4) mutations reverse underreplication of intercalary heterochromatin. Thus, SUMM4 can impart late replication of intercalary heterochromatin by attenuating the progression of replication forks through euchromatin/heterochromatin boundaries. Our findings implicate a SNF2 family ATP-dependent motor protein SUUR in the insulator function, reveal that DNA replication can be delayed by a chromatin barrier, and uncover a critical role for architectural proteins in replication control. They suggest a mechanism for the establishment of late replication that does not depend on an asynchronous firing of late replication origins.
Collapse
Affiliation(s)
- Evgeniya N Andreyeva
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | | | - Markus Nevil
- UNC-SPIRE, University of North CarolinaChapel HillUnited States
| | - Lu Sun
- EpiCypherDurhamUnited States
| | - Elena Vershilova
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Christina A Hill
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel HillChapel HillUnited States
| | | | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North CarolinaChapel HillUnited States
- Department of Biology, University of North CarolinaChapel HillUnited States
- Department of Genetics, University of North CarolinaChapel HillUnited States
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
10
|
Rujano MA, Briand D, Ðelić B, Marc J, Spéder P. An interplay between cellular growth and atypical fusion defines morphogenesis of a modular glial niche in Drosophila. Nat Commun 2022; 13:4999. [PMID: 36008397 PMCID: PMC9411534 DOI: 10.1038/s41467-022-32685-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Neural stem cells (NSCs) live in an intricate cellular microenvironment supporting their activity, the niche. Whilst shape and function are inseparable, the morphogenetic aspects of niche development are poorly understood. Here, we use the formation of a glial niche to investigate acquisition of architectural complexity. Cortex glia (CG) in Drosophila regulate neurogenesis and build a reticular structure around NSCs. We first show that individual CG cells grow tremendously to ensheath several NSC lineages, employing elaborate proliferative mechanisms which convert these cells into syncytia rich in cytoplasmic bridges. CG syncytia further undergo homotypic cell-cell fusion, using defined cell surface receptors and actin regulators. Cellular exchange is however dynamic in space and time. This atypical cell fusion remodels cellular borders, restructuring the CG syncytia. Ultimately, combined growth and fusion builds the multi-level architecture of the niche, and creates a modular, spatial partition of the NSC population. Our findings provide insights into how a niche forms and organises while developing intimate contacts with a stem cell population.
Collapse
Affiliation(s)
| | | | - Bojana Ðelić
- Institut Pasteur, CNRS UMR3738, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Cell Division and Neurogenesis, Ecole Normale Supérieure, CNRS, Inserm, PSL Université Paris, Paris, France
| | - Julie Marc
- Institut Pasteur, CNRS UMR3738, Paris, France
| | | |
Collapse
|
11
|
Bateman JR, Johnson JE. Altering enhancer-promoter linear distance impacts promoter competition in cis and in trans. Genetics 2022; 222:6617354. [PMID: 35748724 PMCID: PMC9434180 DOI: 10.1093/genetics/iyac098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/18/2022] [Indexed: 11/14/2022] Open
Abstract
In Drosophila, pairing of maternal and paternal homologs can permit trans-interactions between enhancers on one homolog and promoters on another, an example of a phenomenon called transvection. When chromosomes are paired, promoters in cis and in trans to an enhancer can compete for the enhancer's activity, but the parameters that govern this competition are as yet poorly understood. To assess how the linear spacing between an enhancer and promoter can influence promoter competition in Drosophila, we employed transgenic constructs wherein the eye-specific enhancer GMR is placed at varying distances from a heterologous hsp70 promoter driving a fluorescent reporter. While GMR activates the reporter to a high degree when the enhancer and promoter are spaced by a few hundred base pairs, activation is strongly attenuated when the enhancer is moved 3 kilobases away. By examining transcription of endogenous genes near the point of transgene insertion, we show that linear spacing of 3 kb between GMR and the hsp70 promoter results in elevated transcription of neighboring promoters, suggesting a loss of specificity between the enhancer and its intended transgenic target promoter. Furthermore, increasing spacing between GMR and hsp70 by just 100 bp can enhance transvection, resulting in increased activation of a promoter on a paired homolog at the expense of a promoter in cis to the enhancer. Finally, cis-/trans-promoter competition assays in which one promoter carries mutations to key core promoter elements show that GMR will skew its activity toward a wild type promoter, suggesting that an enhancer is in a balanced competition between its potential target promoters in cis and in trans.
Collapse
Affiliation(s)
- Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | | |
Collapse
|
12
|
Nuclear Dynamics and Chromatin Structure: Implications for Pancreatic Cancer. Cells 2021; 10:cells10102624. [PMID: 34685604 PMCID: PMC8534098 DOI: 10.3390/cells10102624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Changes in nuclear shape have been extensively associated with the dynamics and functionality of cancer cells. In most normal cells, nuclei have a regular ellipsoid shape and minimal variation in nuclear size; however, an irregular nuclear contour and abnormal nuclear size is often observed in cancer, including pancreatic cancer. Furthermore, alterations in nuclear morphology have become the 'gold standard' for tumor staging and grading. Beyond the utility of altered nuclear morphology as a diagnostic tool in cancer, the implications of altered nuclear structure for the biology and behavior of cancer cells are profound as changes in nuclear morphology could impact cellular responses to physical strain, adaptation during migration, chromatin organization, and gene expression. Here, we aim to highlight and discuss the factors that regulate nuclear dynamics and their implications for pancreatic cancer biology.
Collapse
|
13
|
Chromosome-Centric View of Genome Organization and Evolution. Genes (Basel) 2021; 12:genes12081237. [PMID: 34440411 PMCID: PMC8391126 DOI: 10.3390/genes12081237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
Genetic material in all cellular organisms is packed into chromosomes, which represent essential units of inheritance, recombination, and evolution [...].
Collapse
|