1
|
Carrera-Játiva PD, Acosta-Jamett G, Muñoz P. Molecular detection of Cryptosporidium parvum in wild rodents ( Phyllotis darwini) inhabiting protected and rural transitional areas in north-central Chile. Int J Parasitol Parasites Wildl 2024; 24:100971. [PMID: 39210974 PMCID: PMC11359768 DOI: 10.1016/j.ijppaw.2024.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Wild rodents often harbor Cryptosporidium species that can be transmitted to multiple mammal hosts. In Chile, little is known about Cryptosporidium in wild rodents, and available studies have been focused on morphological findings with no molecular-based evidence. A longitudinal survey was conducted between 2021 and 2022 to investigate the occurrence of Cryptosporidium spp. in populations of the Darwin's leaf-eared mouse (Phyllotis darwini) living in protected and rural transitional areas in north-central Chile, using staining and molecular methods. A total of 247 fecal samples were collected and examined by the modified Ziehl-Neelsen (ZN) staining test, 54 of which were positive for Cryptosporidium-like oocysts. Molecular analyses were carried out by PCR of the partial 18S ribosomal RNA and 60 kDa glycoprotein (gp60) genes. Cryptosporidium infection was confirmed in 34 samples (13.7 %) based on the PCR amplification, and individual (i.e., sex, and body mass index) and ecological variables (i.e., type of site and season) were not statistically significant (p > 0.05). Using the nucleotide sequencing of the partial 18S rRNA gene, Cryptosporidium parvum was identified in nine isolates. Also, C. parvum subgenotype family IIa was determined in seven samples by the partial gp60 gene, including the subtype IIaA17G4R1 in two samples. This is the first molecular evidence of Cryptosporidium parvum IIa in Phyllotis darwini in Chile. These results indicate potential cross-species transmition between wild rodents and domestic-wild animals in north-central Chile. More research is needed to understand better the role of wild rodents in the transmission of Cryptosporidium spp. in Chile.
Collapse
Affiliation(s)
- Patricio D. Carrera-Játiva
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Center for Surveillance and Evolution of Infectious Diseases, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Gerardo Acosta-Jamett
- Center for Surveillance and Evolution of Infectious Diseases, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Muñoz
- Laboratorio de Parasitología, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
2
|
Bayona-Vásquez NJ, Sullivan AH, Beaudry MS, Khan A, Baptista RP, Petersen KN, Bhuiyan M, Brunelle B, Robinson G, Chalmers RM, Alves-Ferreira E, Grigg ME, Kissinger JC, Glenn TC. WHOLE GENOME TARGETED ENRICHMENT AND SEQUENCING OF HUMAN-INFECTING CRYPTOSPORIDIUM spp. RESEARCH SQUARE 2024:rs.3.rs-4294842. [PMID: 38798642 PMCID: PMC11118713 DOI: 10.21203/rs.3.rs-4294842/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cryptosporidium spp. are protozoan parasites that cause severe illness in vulnerable human populations. Obtaining pure Cryptosporidium DNA from clinical and environmental samples is challenging because the oocysts shed in contaminated feces are limited in quantity, difficult to purify efficiently, may derive from multiple species, and yield limited DNA (<40 fg/oocyst). Here, we develop and validate a set of 100,000 RNA baits (CryptoCap_100k) based on six human-infecting Cryptosporidium spp. (C. cuniculus, C. hominis, C. meleagridis, C. parvum, C. tyzzeri, and C. viatorum) to enrich Cryptosporidium spp. DNA from a wide array of samples. We demonstrate that CryptoCap_100k increases the percentage of reads mapping to target Cryptosporidium references in a wide variety of scenarios, increasing the depth and breadth of genome coverage, facilitating increased accuracy of detecting and analyzing species within a given sample, while simultaneously decreasing costs, thereby opening new opportunities to understand the complex biology of these important pathogens.
Collapse
Affiliation(s)
- N J Bayona-Vásquez
- Division of Natural Science and Mathematics, Oxford College of Emory University, Oxford, GA, 30054, USA
| | - A H Sullivan
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - M S Beaudry
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Daicel Arbor Biosciences, Ann Arbor, MI, 48103, USA
| | - A Khan
- Animal Parasitic Disease Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - R P Baptista
- Infectious Diseases, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - K N Petersen
- Odum School of Ecology, University of Georgia, University of Georgia, Athens, GA, 30602, USA
| | - Miu Bhuiyan
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - B Brunelle
- Daicel Arbor Biosciences, Ann Arbor, MI, 48103, USA
| | - G Robinson
- Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea SA2 8QA, UK
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - R M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea SA2 8QA, UK
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Evc Alves-Ferreira
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - M E Grigg
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - J C Kissinger
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - T C Glenn
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
3
|
Bayona-Vásquez NJ, Sullivan AH, Beaudry MS, Khan A, Baptista RP, Petersen KN, Bhuiyan M, Brunelle B, Robinson G, Chalmers RM, Alves-Ferreira E, Grigg ME, AlvesFerreira Kissinger JC, Glenn TC. WHOLE GENOME TARGETED ENRICHMENT AND SEQUENCING OF HUMAN-INFECTING CRYPTOSPORIDIUM spp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.586458. [PMID: 38585809 PMCID: PMC10996700 DOI: 10.1101/2024.03.29.586458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cryptosporidium spp. are protozoan parasites that cause severe illness in vulnerable human populations. Obtaining pure Cryptosporidium DNA from clinical and environmental samples is challenging because the oocysts shed in contaminated feces are limited in quantity, difficult to purify efficiently, may derive from multiple species, and yield limited DNA (<40 fg/oocyst). Here, we develop and validate a set of 100,000 RNA baits (CryptoCap_100k) based on six human-infecting Cryptosporidium spp. ( C. cuniculus , C. hominis , C. meleagridis , C. parvum , C. tyzzeri , and C. viatorum ) to enrich Cryptosporidium spp. DNA from a wide array of samples. We demonstrate that CryptoCap_100k increases the percentage of reads mapping to target Cryptosporidium references in a wide variety of scenarios, increasing the depth and breadth of genome coverage, facilitating increased accuracy of detecting and analyzing species within a given sample, while simultaneously decreasing costs, thereby opening new opportunities to understand the complex biology of these important pathogens.
Collapse
|
4
|
Agyabeng-Dadzie F, Xiao R, Kissinger JC. Cryptosporidium Genomics - Current Understanding, Advances, and Applications. CURRENT TROPICAL MEDICINE REPORTS 2024; 11:92-103. [PMID: 38813571 PMCID: PMC11130048 DOI: 10.1007/s40475-024-00318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 05/31/2024]
Abstract
Purpose of Review Here we highlight the significant contribution that genomics-based approaches have had on the field of Cryptosporidium research and the insights these approaches have generated into Cryptosporidium biology and transmission. Recent Findings There are advances in genomics, genetic manipulation, gene expression, and single-cell technologies. New and better genome sequences have revealed variable sub-telomeric gene families and genes under selection. RNA expression data now include single-cell and post-infection time points. These data have provided insights into the Cryptosporidium life cycle and host-pathogen interactions. Antisense and ncRNA transcripts are abundant. The critical role of the dsRNA virus is becoming apparent. Summary The community's ability to identify genomic targets in the abundant, yet still lacking, collection of genomic data, combined with their increased ability to assess function via gene knock-out, is revolutionizing the field. Advances in the detection of virulence genes, surveillance, population genomics, recombination studies, and epigenetics are upon us.
Collapse
Affiliation(s)
| | - Rui Xiao
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602 USA
| | - Jessica C. Kissinger
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602 USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Coverdell Center, 107, 500 D.W. Brooks Drive, Athens, GA 30602 USA
| |
Collapse
|
5
|
Johansen ØH, Abdissa A, Bjørang O, Zangenberg M, Sharew B, Alemu Y, Moyo S, Mekonnen Z, Langeland N, Robertson LJ, Hanevik K. Oocyst Shedding Dynamics in Children with Cryptosporidiosis: a Prospective Clinical Case Series in Ethiopia. Microbiol Spectr 2022; 10:e0274121. [PMID: 35699433 PMCID: PMC9430463 DOI: 10.1128/spectrum.02741-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Knowledge on the duration of Cryptosporidium oocyst shedding, and how shedding may be affected by subtypes and clinical parameters, is limited. Reduced transmission may be a secondary benefit of cryptosporidiosis treatment in high-prevalence areas. We conducted a prospective clinical case series in children of <5 years presenting with diarrhea to a health center and a hospital in Ethiopia over an 18-month period. Stool samples were collected repeatedly from children diagnosed with cryptosporidiosis for up to 60 days. Samples were examined, and Cryptosporidium shedding was quantified, using auramine phenol, immunofluorescent antibody staining, and quantitative PCR (qPCR). In addition, species determination and subtyping were used to attempt to distinguish between new infections and ongoing shedding. Duration and quantity of shedding over time were estimated by time-to-event and quantitative models (sex- and age-adjusted). We also explored how diarrheal severity, acute malnutrition, and Cryptosporidium subtypes correlated with temporal shedding patterns. From 53 confirmed cryptosporidiosis cases, a median of 4 (range 1 to 5) follow-up stool samples were collected and tested for Cryptosporidium. The median duration of oocyst shedding was 31 days (95% confidence interval [CI], 26 to 36 days) after onset of diarrhea, with similar estimates from the quantitative models (31 days, 95% CI 27 to 37 days). Genotype shift occurred in 5 cases (9%). A 10-fold drop in quantity occurred per week for the first 4 weeks. Prolonged oocyst shedding is common in a pediatric clinical population with cryptosporidiosis. We suggest that future intervention trials should evaluate both clinical efficacy and total parasite shedding duration as trial endpoints. IMPORTANCE Cryptosporidiosis is an important cause of diarrhea, malnutrition, and deaths in young children in low-income countries. The infection spreads from person to person. After infection, prolonged release of the Cryptosporidium parasite in stool (shedding) may contribute to further spread of the disease. If diagnosis and treatment are made available, diarrhea will be treated and deaths will be reduced. An added benefit may be to reduce transmission to others. However, shedding duration and its characteristics in children is not well known. We therefore investigated the duration of shedding in a group of young children who sought health care for diarrhea in a hospital and health center in Ethiopia. The study followed 53 children with cryptosporidiosis for 2 months. We found that, on average, children released the parasite for 31 days after the diarrhea episode started. Point-of-care treatment of cryptosporidiosis may therefore reduce onward spread of the Cryptosporidium parasite within communities and households.
Collapse
Affiliation(s)
- Øystein H. Johansen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Alemseged Abdissa
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Ola Bjørang
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Mike Zangenberg
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Bizuwarek Sharew
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Yonas Alemu
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Sabrina Moyo
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Zeleke Mekonnen
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lucy J. Robertson
- Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
6
|
Hasan M, Mia M. Exploratory Algorithm of a Multi-epitope-based Subunit Vaccine Candidate Against Cryptosporidium hominis: Reverse Vaccinology-Based Immunoinformatic Approach. Int J Pept Res Ther 2022; 28:134. [PMID: 35911179 PMCID: PMC9315849 DOI: 10.1007/s10989-022-10438-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 12/03/2022]
Abstract
Cryptosporidiosis is the leading protozoan-induced cause of diarrheal illness in children, and it has been linked to childhood mortality, malnutrition, cognitive development, with retardation of growth. Cryptosporidium hominis, the anthroponotically transmitted species within the Cryptosporidium genus, contributes significantly to the global burden of infection, accounting for the majority of clinical cases in numerous nations, as well as its emergence in the last decade is largely due to detections obtained through noteworthy epidemiologic research. Nevertheless, there is no vaccine available, and the only licensed medication, nitazoxanide, has been demonstrated to have efficacy limitations in a number of patient groups recognized to be at high risk of complications. Therefore, current study delineates the computational vaccine design for Cryptosporidium hominis, the notable pathogen for enteric diarrhea. Firstly, a comprehensive literature search was conducted to identify six proteins based on their toxigenicity, allergenicity, antigenicity, and prediction of transmembrane helices to make up a multi-epitope-based subunit vaccine. Following that, antigenic non-toxic HTL epitope, CTL epitope with B cell epitope were predicted from the selected proteins and construct a vaccine candidate with adding an adjuvant and some linkers with immunologically superior epitopes. Afterwards, the constructed vaccine candidates and TLR2 receptor were put into the ClusPro server for molecular dynamic simulation to know the binding stability of the vaccine-TLR2 complex. Following that, Escherichia coli strain K12 was used as a cloning host for the chosen vaccine construct via the JCat server. As a result of the findings, it was resolute that the proposed chimeric peptide vaccine could improve the immune response to Cryptosporidium hominis.
Collapse
Affiliation(s)
- Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh
| | - Mukthar Mia
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh
| |
Collapse
|
7
|
Nipa NJ, Aktar N, Hira HM, Akter F, Jahan D, Islam S, Etando A, Abdullah A, Chowdhury K, Ahmad R, Haq A, Haque M. Intestinal Parasitic Infections Among Pediatric Patients in a Metropolitan City of Bangladesh With Emphasis on Cryptosporidiosis. Cureus 2022; 14:e26927. [PMID: 35865179 PMCID: PMC9293268 DOI: 10.7759/cureus.26927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Gastrointestinal parasitic infections are one of the global health concerns in developing countries like Bangladesh. Among them, Cryptosporidium spp. plays an essential role in causing diarrhea, malnutrition, and poor cognitive function, especially in children. This study was conducted to identify the frequency of Cryptosporidium cases and other parasitic agents. Methods A cross-sectional observational study was conducted among 219 hospitalized children with diarrhea. The conventional microscopic technique was applied for parasitic detection. Particular staining (modified Ziehl-Neelsen) procedure was performed to identify oocysts of Cryptosporidium spp. A polymerase chain reaction (PCR) was performed to determine the SSU rRNA and gp60 gene of Cryptosporidium. Results Cysts of Giardia duodenalis (2.3%), ova of Ascaris lumbricoides (1.4%,), Trichuris trichiura (0.5%), and both A. lumbricoides and T. trichiura (0.9%) were identified in samples through wet mount preparation. The distribution of Cryptosporidium spp. as detected by the staining method and nested PCR was 1.4% and 4.1%, respectively. Conclusion Factors independently associated with Cryptosporidium infection are unsafe water, lack of regular hand washing, and insufficiency of exclusive breastfeeding. This study reports, presumably for the first time, the detection of Cryptosporidium oocysts in Chattogram metropolitan city of Bangladesh.
Collapse
Affiliation(s)
| | - Nasima Aktar
- Microbiology, Chittagong Medical College, Chattogram, BGD
| | - Hasina M Hira
- Community Medicine, Chittagong Medical College, Chattogram, BGD
| | - Farhana Akter
- Endocrinology and Diabetes, Chittagong Medical College, Chattogram, BGD
| | | | | | - Ayukafangha Etando
- Medical Laboratory Sciences, Faculty of Health Sciences, Eswatini Medical Christian University, Mbabane, SWZ
| | - Adnan Abdullah
- Occupational Medicine, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, MYS
| | - Kona Chowdhury
- Pediatrics, Gonoshasthaya Samaj Vittik Medical College, Savar, BGD
| | - Rahnuma Ahmad
- Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Ahsanul Haq
- Statistics, Gonoshasthaya - RNA Biotech Limited, Savar, BGD
| | - Mainul Haque
- Pharmacology and Therapeutics, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, MYS
| |
Collapse
|
8
|
Mkandawire TT, Sateriale A. The Long and Short of Next Generation Sequencing for Cryptosporidium Research. Front Cell Infect Microbiol 2022; 12:871860. [PMID: 35419299 PMCID: PMC8995782 DOI: 10.3389/fcimb.2022.871860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
The intestinal parasite Cryptosporidium is a significant cause of severe diarrhoeal disease that can have long term effects. Therapeutic options remain limited despite a significant impact on public health, partly due to various challenges in the field of Cryptosporidium research, including the availability of genomic and transcriptomic data from environmental and clinical isolates. In this review we explore how long read DNA and RNA sequencing technologies have begun to provide novel insights into the biology of the parasite. The increased deployment of these technologies will help researchers address key gaps in the understanding of Cryptosporidium biology, and ultimately drive translational research and better parasite control.
Collapse
|
9
|
Pinto P, Ribeiro CA, Hoque S, Hammouma O, Leruste H, Détriché S, Canniere E, Daandels Y, Dellevoet M, Roemen J, Barbier Bourgeois A, Kváč M, Follet J, Tsaousis AD. Cross-Border Investigations on the Prevalence and Transmission Dynamics of Cryptosporidium Species in Dairy Cattle Farms in Western Mainland Europe. Microorganisms 2021; 9:2394. [PMID: 34835519 PMCID: PMC8617893 DOI: 10.3390/microorganisms9112394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 12/01/2022] Open
Abstract
Cryptosporidium is an apicomplexan parasitic protist, which infects a wide range of hosts, causing cryptosporidiosis disease. In farms, the incidence of this disease is high in animals such as cows, leading to extensive economic loss in the livestock industry. Infected cows may also act as a major reservoir of Cryptosporidium spp., in particular C. parvum, the most common cause of cryptosporidiosis in these animals. This poses a risk to the trading of livestock, to other farms via breeding centres, and to human health. This study is a part of a global project aimed at strategies to tackle cryptosporidiosis. To reach this target, it was essential to determine whether prevalence was dependent on the studied countries or if the issue was borderless. Indeed, C. parvum occurrence was assessed across dairy farms in certain regions of Belgium, France, and the Netherlands. At the same time, the animal-to-animal transmission of the circulating C. parvum subtypes was studied. To accomplish this, we analysed 1084 faecal samples, corresponding to 57 dairy farms from all three countries. To this end, 18S rRNA and gp60 genes fragments were amplified, followed by DNA sequencing, which was subsequently used for detection and subtyping C. parvum. Bioinformatic and phylogenetic methods were integrated to analyse and characterise the obtained DNA sequences. Our results show 25.7%, 24.9% and 20.8% prevalence of Cryptosporidium spp. in Belgium, France, and the Netherlands respectively. Overall, 93% of the farms were Cryptosporidium positive. The gp60 subtyping demonstrated a significant number of the C. parvum positives belonged to the IIa allelic family, which has been also identified in humans. Therefore, this study highlights how prevalent C. parvum is in dairy farms and further suggests cattle as a possible carrier of zoonotic C. parvum subtypes, which could pose a threat to human health.
Collapse
Affiliation(s)
- Pedro Pinto
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK; (P.P.); (C.A.R.); (S.H.)
| | - Cláudia A. Ribeiro
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK; (P.P.); (C.A.R.); (S.H.)
| | - Sumaiya Hoque
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK; (P.P.); (C.A.R.); (S.H.)
| | - Ourida Hammouma
- UMR-Transfrontalière 1158 BioEcoAgro, Junia, University of Lille, University of Liège, UPJV, ULCO, University of Artois, INRAE, F-59000 Lille, France;
| | - Hélène Leruste
- Junia, Comportement Animal et Systèmes d’Elevage, F-59000 Lille, France;
| | - Sébastien Détriché
- University of Lille, Institut Mines-Télécom, University of Artois, Junia, ULR 4515—LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000 Lille, France;
| | - Evi Canniere
- Inagro vzw, Ieperseweg 87, 8800 Rumbeke-Beitem, Belgium;
| | - Yvonne Daandels
- Southern Agricultural and Horticultural Organisation (ZLTO), Onderwijsboulevard 225, 5223 DE’s-Hertogenbosch, The Netherlands; (Y.D.); (M.D.); (J.R.)
| | - Martine Dellevoet
- Southern Agricultural and Horticultural Organisation (ZLTO), Onderwijsboulevard 225, 5223 DE’s-Hertogenbosch, The Netherlands; (Y.D.); (M.D.); (J.R.)
| | - Janine Roemen
- Southern Agricultural and Horticultural Organisation (ZLTO), Onderwijsboulevard 225, 5223 DE’s-Hertogenbosch, The Netherlands; (Y.D.); (M.D.); (J.R.)
| | | | - Martin Kváč
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Parasitology, 37005 České Budějovice, Czech Republic;
- Faculty of Agriculture, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic
| | - Jérôme Follet
- University of Lille, CNRS, Centrale Lille, Junia, University Polytechnique Hauts de France, UMR 8520 IEMN Institut d’Electronique de Microélectronique et de Nanotechnologie, F 59000 Lille, France;
| | - Anastasios D. Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK; (P.P.); (C.A.R.); (S.H.)
| |
Collapse
|
10
|
Ryan U, Zahedi A, Feng Y, Xiao L. An Update on Zoonotic Cryptosporidium Species and Genotypes in Humans. Animals (Basel) 2021; 11:3307. [PMID: 34828043 PMCID: PMC8614385 DOI: 10.3390/ani11113307] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The enteric parasite, Cryptosporidium is a major cause of diarrhoeal illness in humans and animals worldwide. No effective therapeutics or vaccines are available and therefore control is dependent on understanding transmission dynamics. The development of molecular detection and typing tools has resulted in the identification of a large number of cryptic species and genotypes and facilitated our understanding of their potential for zoonotic transmission. Of the 44 recognised Cryptosporidium species and >120 genotypes, 19 species, and four genotypes have been reported in humans with C. hominis, C. parvum, C. meleagridis, C. canis and C. felis being the most prevalent. The development of typing tools that are still lacking some zoonotic species and genotypes and more extensive molecular epidemiological studies in countries where the potential for transmission is highest are required to further our understanding of this important zoonotic pathogen. Similarly, whole-genome sequencing (WGS) and amplicon next-generation sequencing (NGS) are important for more accurately tracking transmission and understanding the mechanisms behind host specificity.
Collapse
Affiliation(s)
- Una Ryan
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
11
|
O'Leary JK, Sleator RD, Lucey B. Cryptosporidium spp. diagnosis and research in the 21 st century. Food Waterborne Parasitol 2021; 24:e00131. [PMID: 34471706 PMCID: PMC8390533 DOI: 10.1016/j.fawpar.2021.e00131] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
The protozoan parasite Cryptosporidium has emerged as a leading cause of diarrhoeal illness worldwide, posing a significant threat to young children and immunocompromised patients. While endemic in the vast majority of developing countries, Cryptosporidium also has the potential to cause waterborne epidemics and large scale outbreaks in both developing and developed nations. Anthroponontic and zoonotic transmission routes are well defined, with the ingestion of faecally contaminated food and water supplies a common source of infection. Microscopy, the current diagnostic mainstay, is considered by many to be suboptimal. This has prompted a shift towards alternative diagnostic techniques in the advent of the molecular era. Molecular methods, particularly PCR, are gaining traction in a diagnostic capacity over microscopy in the diagnosis of cryptosporidiosis, given the laborious and often tedious nature of the latter. Until now, developments in the field of Cryptosporidium detection and research have been somewhat hampered by the intractable nature of this parasite. However, recent advances in the field have taken the tentative first steps towards bringing Cryptosporidium research into the 21st century. Herein, we provide a review of these advances.
Collapse
Affiliation(s)
- Jennifer K. O'Leary
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| | - Roy D. Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| |
Collapse
|
12
|
Dettwiler I, Troell K, Robinson G, Chalmers RM, Basso W, Rentería-Solís ZM, Daugschies A, Mühlethaler K, Dale M, Basapathi Raghavendra J, Ruf MT, Poppert S, Meylan M, Olias P. TIDE analysis of Cryptosporidium infections by gp60 typing reveals obscured mixed infections. J Infect Dis 2021; 225:686-695. [PMID: 34417806 DOI: 10.1093/infdis/jiab417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cryptosporidiosis is a parasitic disease associated with potentially fatal diarrhea. The most used method in Cryptosporidium subtyping is based on the glycoprotein gene gp60. Each infection can represent a parasite population, and it is important to investigate the influence on transmission and virulence, as well as any impact on public health investigations. However, an easy-to-use method for detection is lacking. METHODS Here we report on the use of the bioinformatic program TIDE for deconvolution of gp60 chromatograms. A combination of single oocyst analysis and cloning successfully confirmed the within-sample parasite population diversity. Retrospective sample analysis was conducted on archived chromatograms. RESULTS For C. parvum, 8.6% multi-strain infections (13 out of 152) obscured by currently used consensus base calling were detected. Importantly, we show that single oocysts can harbor a mixed population of sporozoites. We also identified a striking dominance of unappreciated polymerase stutter artefacts in all 218 chromatograms analyzed, challenging the uncritical use of gp60 typing. DISCUSSION We demonstrate the value of a new easy-to-use analytical procedure for critical characterization of C. parvum and C. hominis in epidemiological investigations, also applicable in retrospect. Our findings illuminate the hidden parasite diversity with important implications for tracing zoonotic and person-to-person transmissions.
Collapse
Affiliation(s)
- Ines Dettwiler
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Karin Troell
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, United Kingdom.,Swansea University Medical School, Swansea, United Kingdom
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, United Kingdom.,Swansea University Medical School, Swansea, United Kingdom
| | - Walter Basso
- Institute of Parasitology, University of Bern, Bern, Switzerland
| | | | - Arwid Daugschies
- Institute for Parasitology, University of Leipzig, Leipzig, Germany
| | - Konrad Mühlethaler
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Mariko Dale
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | | | - Marie-Thérèse Ruf
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University Basel, Basel, Switzerland
| | - Sven Poppert
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University Basel, Basel, Switzerland
| | | | - Philipp Olias
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|