1
|
Li Q, Wang C, Li A, Qi H, Wang W, Wang X, Zhang G, Li L. Genetic Variants Affecting FADS2 Enzyme Dynamics and Gene Expression in Cogenetic Oysters with Different PUFA Levels Provide New Tools to Improve Unsaturated Fatty Acids. Int J Mol Sci 2024; 25:13551. [PMID: 39769316 PMCID: PMC11677070 DOI: 10.3390/ijms252413551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are crucial for human health and cannot be produced internally. Bivalves, such as oysters, serve as valuable sources of high-quality PUFAs. The enzyme fatty acid desaturase (FADS) plays a key role in the metabolism of LC-PUFAs. In this study, we conducted a thorough genome-wide analysis of the genes belong to the FADS family in Crassostrea gigas and Crassostrea angulata, with the objective of elucidating the function of the FADS2 and investigating the genetic variations that affect PUFA biosynthesis. We identified six FADS genes distributed across four chromosomes, categorized into three subfamilies. The coding region of FADS2 revealed five non-synonymous mutations that were shown to influence protein structure and stability through molecular dynamics simulations. The promoter region of FADS2 contains ten SNPs and three indels significantly correlated with PUFA content. These genetic variations may explain the differences in PUFA levels observed between the two oyster species and could have potential applications in enhancing PUFA content. This study improves the molecular understanding of PUFA metabolism in oysters and presents a potential strategy for selecting oysters with high PUFA levels.
Collapse
Affiliation(s)
- Qingyuan Li
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Q.L.); (C.W.); (A.L.); (H.Q.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266200, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chaogang Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Q.L.); (C.W.); (A.L.); (H.Q.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266200, China;
| | - Ao Li
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Q.L.); (C.W.); (A.L.); (H.Q.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266200, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266071, China;
| | - Haigang Qi
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Q.L.); (C.W.); (A.L.); (H.Q.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266200, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wei Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266071, China;
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xinxing Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Q.L.); (C.W.); (A.L.); (H.Q.); (X.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266200, China;
| | - Guofan Zhang
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266200, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Li
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266200, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266071, China;
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
2
|
Du M, Jiang Z, Wang C, Wei C, Li Q, Cong R, Wang W, Zhang G, Li L. Genome-Wide Association Analysis of Heat Tolerance in F 2 Progeny from the Hybridization between Two Congeneric Oyster Species. Int J Mol Sci 2023; 25:125. [PMID: 38203295 PMCID: PMC10778899 DOI: 10.3390/ijms25010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
As the world's largest farmed marine animal, oysters have enormous economic and ecological value. However, mass summer mortality caused by high temperature poses a significant threat to the oyster industry. To investigate the molecular mechanisms underlying heat adaptation and improve the heat tolerance ability in the oyster, we conducted genome-wide association analysis (GWAS) analysis on the F2 generation derived from the hybridization of relatively heat-tolerant Crassostrea angulata ♀ and heat-sensitive Crassostrea gigas ♂, which are the dominant cultured species in southern and northern China, respectively. Acute heat stress experiment (semi-lethal temperature 42 °C) demonstrated that the F2 population showed differentiation in heat tolerance, leading to extremely differentiated individuals (approximately 20% of individuals die within the first four days with 10% survival after 14 days). Genome resequencing and GWAS of the two divergent groups had identified 18 significant SNPs associated with heat tolerance, with 26 candidate genes located near these SNPs. Eleven candidate genes that may associate with the thermal resistance were identified, which were classified into five categories: temperature sensor (Trpm2), transcriptional factor (Gata3), protein ubiquitination (Ube2h, Usp50, Uchl3), heat shock subfamily (Dnajc17, Dnaja1), and transporters (Slc16a9, Slc16a14, Slc16a9, Slc16a2). The expressional differentiation of the above genes between C. gigas and C. angulata under sublethal temperature (37 °C) further supports their crucial role in coping with high temperature. Our results will contribute to understanding the molecular mechanisms underlying heat tolerance, and provide genetic markers for heat-resistance breeding in the oyster industry.
Collapse
Affiliation(s)
- Mingyang Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.D.); (Z.J.); (C.W.); (C.W.); (Q.L.); (R.C.); (W.W.); (G.Z.)
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266100, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhuxiang Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.D.); (Z.J.); (C.W.); (C.W.); (Q.L.); (R.C.); (W.W.); (G.Z.)
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266100, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chaogang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.D.); (Z.J.); (C.W.); (C.W.); (Q.L.); (R.C.); (W.W.); (G.Z.)
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266100, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chenchen Wei
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.D.); (Z.J.); (C.W.); (C.W.); (Q.L.); (R.C.); (W.W.); (G.Z.)
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266100, China
| | - Qingyuan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.D.); (Z.J.); (C.W.); (C.W.); (Q.L.); (R.C.); (W.W.); (G.Z.)
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266100, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.D.); (Z.J.); (C.W.); (C.W.); (Q.L.); (R.C.); (W.W.); (G.Z.)
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266100, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.D.); (Z.J.); (C.W.); (C.W.); (Q.L.); (R.C.); (W.W.); (G.Z.)
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266100, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.D.); (Z.J.); (C.W.); (C.W.); (Q.L.); (R.C.); (W.W.); (G.Z.)
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266100, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Wuhan 430072, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (M.D.); (Z.J.); (C.W.); (C.W.); (Q.L.); (R.C.); (W.W.); (G.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266100, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Wuhan 430072, China
| |
Collapse
|
3
|
Zhang K, Yang Q, Du M, Zhang Z, Wang W, Zhang G, Li A, Li L. Genome-wide mapping of regulatory variants for temperature- and salinity-adaptive genes reveals genetic basis of genotype-by-environment interaction in Crassostrea ariakensis. ENVIRONMENTAL RESEARCH 2023; 236:116614. [PMID: 37442261 DOI: 10.1016/j.envres.2023.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Regulatory variants in gene expression serve as bridges linking genetic variation and phenotypic plasticity. Environmental conditions typically influence the effects of regulatory variants on phenotypic plasticity; however, such genotype-by-environment interactions (G × E) are poorly understood. This study aimed to investigate the genetic basis of G × E in estuarine oyster (Crassostrea ariakensis), which is an important model animal for studying environmental adaption owing to its high plasticity and large intraspecific divergence. Genome-wide mapping of expression quantitative trait loci (eQTLs) for 23 environmental adaptive genes was performed for 256 estuarine oysters. We identified 1194 eQTL single nucleotide polymorphisms (eSNPs), including 433 cis-eSNPs in four genes and 722 trans-eSNPs in eight genes. The expression variation explanation of cis-eSNPs (9.95%) was significantly higher than that of trans-eSNPs (9.15%). We specifically showed cis- and trans-eSNPs with high linkage disequilibrium (LD) for Traf7, Slc6a5, Ggt, and Dap3. For example, we identified a cis-regulatory LD block containing 68 cis-eSNP and a trans-regulatory LD block, including 20 trans-eSNPs in Traf7. A high proportion (85%) of 40 vital eSNPs exhibited significant G × E effects. We identified crossing and nonparallel interactions of G × E, with the tag cis-eSNPs of Baat and Slc6a5 as representatives. Our results indicated that cis-eQTLs are highly conserved. This study provides insights into the understanding of adaptive evolutionary mechanisms and phenotypic response prediction to variable environments, as well as the genetic improvement for superior adaptive traits for genetic resource conservation and aquaculture.
Collapse
Affiliation(s)
- Kexin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mingyang Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China.
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266000, China.
| |
Collapse
|
4
|
Yao S, Li L, Guan X, He Y, Jouaux A, Xu F, Guo X, Zhang G, Zhang L. Pooled resequencing of larvae and adults reveals genomic variations associated with Ostreid herpesvirus 1 resistance in the Pacific oyster Crassostrea gigas. Front Immunol 2022; 13:928628. [PMID: 36059443 PMCID: PMC9437489 DOI: 10.3389/fimmu.2022.928628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
The Ostreid herpesvirus 1 (OsHV-1) is a lethal pathogen of the Pacific oyster (Crassostrea gigas), an important aquaculture species. To understand the genetic architecture of the defense against the pathogen, we studied genomic variations associated with herpesvirus-caused mortalities by pooled whole-genome resequencing of before and after-mortality larval samples as well as dead and surviving adults from a viral challenge. Analysis of the resequencing data identified 5,271 SNPs and 1,883 genomic regions covering 3,111 genes in larvae, and 18,692 SNPs and 28,314 regions covering 4,863 genes in adults that were significantly associated with herpesvirus-caused mortalities. Only 1,653 of the implicated genes were shared by larvae and adults, suggesting that the antiviral response or resistance in larvae and adults involves different sets of genes or differentiated members of expanded gene families. Combined analyses with previous transcriptomic data from challenge experiments revealed that transcription of many mortality-associated genes was also significantly upregulated by herpesvirus infection confirming their importance in antiviral response. Key immune response genes especially those encoding antiviral receptors such as TLRs and RLRs displayed strong association between variation in regulatory region and herpesvirus-caused mortality, suggesting they may confer resistance through transcriptional modulation. These results point to previously undescribed genetic mechanisms for disease resistance at different developmental stages and provide candidate polymorphisms and genes that are valuable for understanding antiviral immune responses and breeding for herpesvirus resistance.
Collapse
Affiliation(s)
- Shanshan Yao
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Li Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| | - Xudong Guan
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yan He
- Ministry of Education (MOE) Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Aude Jouaux
- UMR BOREA, “Biologie des Organismes et Ecosystèmes Aquatiques”, MNHN, UPMC, UCBN, CNRS-7208, IRD, Université de Caen Basse-Normandie, Esplanade de la Paix, Caen, France
| | - Fei Xu
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ, United States
| | - Guofan Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| | - Linlin Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, College of Marine Science, Beijing, China
| |
Collapse
|