1
|
Caracausi M, Ramacieri G, Catapano F, Cicilloni M, Lajin B, Pelleri MC, Piovesan A, Vitale L, Locatelli C, Pirazzoli GL, Strippoli P, Antonaros F, Vione B. The functional roles of S-adenosyl-methionine and S-adenosyl-homocysteine and their involvement in trisomy 21. Biofactors 2024; 50:709-724. [PMID: 38353465 DOI: 10.1002/biof.2044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 08/09/2024]
Abstract
The one-carbon metabolism pathway is involved in critical human cellular functions such as cell proliferation, mitochondrial respiration, and epigenetic regulation. In the homocysteine-methionine cycle S-adenosyl-methionine (SAM) and S-adenosyl-homocysteine (SAH) are synthetized, and their levels are finely regulated to ensure proper functioning of key enzymes which control cellular growth and differentiation. Here we review the main biological mechanisms involving SAM and SAH and the known related human diseases. It was recently demonstrated that SAM and SAH levels are altered in plasma of subjects with trisomy 21 (T21) but how this metabolic dysregulation influences the clinical manifestation of T21 phenotype has not been previously described. This review aims at providing an overview of the biological mechanisms which are altered in response to changes in the levels of SAM and SAH observed in DS.
Collapse
Affiliation(s)
- Maria Caracausi
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giuseppe Ramacieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Speciality School of Child Neuropsychiatry-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesca Catapano
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Michela Cicilloni
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Bassam Lajin
- Institute of Chemistry, ChromICP, University of Graz, Graz, Austria
| | - Maria Chiara Pelleri
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Bologna, Italy
| | | | - Pierluigi Strippoli
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Antonaros
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Beatrice Vione
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Zhang Z, Reynolds SR, Stolrow HG, Chen J, Christensen BC, Salas LA. Deciphering the role of immune cell composition in epigenetic age acceleration: Insights from cell-type deconvolution applied to human blood epigenetic clocks. Aging Cell 2024; 23:e14071. [PMID: 38146185 PMCID: PMC10928575 DOI: 10.1111/acel.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023] Open
Abstract
Aging is a significant risk factor for various human disorders, and DNA methylation clocks have emerged as powerful tools for estimating biological age and predicting health-related outcomes. Methylation data from blood DNA has been a focus of more recently developed DNA methylation clocks. However, the impact of immune cell composition on epigenetic age acceleration (EAA) remains unclear as only some clocks incorporate partial cell type composition information when analyzing EAA. We investigated associations of 12 immune cell types measured by cell-type deconvolution with EAA predicted by six widely-used DNA methylation clocks in data from >10,000 blood samples. We observed significant associations of immune cell composition with EAA for all six clocks tested. Across the clocks, nine or more of the 12 cell types tested exhibited significant associations with EAA. Higher memory lymphocyte subtype proportions were associated with increased EAA, and naïve lymphocyte subtypes were associated with decreased EAA. To demonstrate the potential confounding of EAA by immune cell composition, we applied EAA in rheumatoid arthritis. Our research maps immune cell type contributions to EAA in human blood and offers opportunities to adjust for immune cell composition in EAA studies to a significantly more granular level. Understanding associations of EAA with immune profiles has implications for the interpretation of epigenetic age and its relevance in aging and disease research. Our detailed map of immune cell type contributions serves as a resource for studies utilizing epigenetic clocks across diverse research fields, including aging-related diseases, precision medicine, and therapeutic interventions.
Collapse
Affiliation(s)
- Ze Zhang
- Department of EpidemiologyGeisel School of Medicine at DartmouthLebanonNew HampshireUSA
- Dartmouth Cancer CenterDartmouth‐Hitchcock Medical CenterLebanonNew HampshireUSA
- Quantitative Biomedical Sciences ProgramGuarini School of Graduate and Advanced StudiesHanoverNew HampshireUSA
| | - Samuel R. Reynolds
- Department of EpidemiologyGeisel School of Medicine at DartmouthLebanonNew HampshireUSA
| | - Hannah G. Stolrow
- Department of EpidemiologyGeisel School of Medicine at DartmouthLebanonNew HampshireUSA
- Dartmouth Cancer CenterDartmouth‐Hitchcock Medical CenterLebanonNew HampshireUSA
| | - Ji‐Qing Chen
- Department of EpidemiologyGeisel School of Medicine at DartmouthLebanonNew HampshireUSA
- Molecular and Cellular Biology ProgramGuarini School of Graduate and Advanced StudiesHanoverNew HampshireUSA
| | - Brock C. Christensen
- Department of EpidemiologyGeisel School of Medicine at DartmouthLebanonNew HampshireUSA
- Dartmouth Cancer CenterDartmouth‐Hitchcock Medical CenterLebanonNew HampshireUSA
- Quantitative Biomedical Sciences ProgramGuarini School of Graduate and Advanced StudiesHanoverNew HampshireUSA
- Molecular and Cellular Biology ProgramGuarini School of Graduate and Advanced StudiesHanoverNew HampshireUSA
| | - Lucas A. Salas
- Department of EpidemiologyGeisel School of Medicine at DartmouthLebanonNew HampshireUSA
- Dartmouth Cancer CenterDartmouth‐Hitchcock Medical CenterLebanonNew HampshireUSA
- Quantitative Biomedical Sciences ProgramGuarini School of Graduate and Advanced StudiesHanoverNew HampshireUSA
- Molecular and Cellular Biology ProgramGuarini School of Graduate and Advanced StudiesHanoverNew HampshireUSA
| |
Collapse
|
3
|
Zhang Z, Stolrow HG, Christensen BC, Salas LA. Down Syndrome Altered Cell Composition in Blood, Brain, and Buccal Swab Samples Profiled by DNA-Methylation-Based Cell-Type Deconvolution. Cells 2023; 12:1168. [PMID: 37190077 PMCID: PMC10136493 DOI: 10.3390/cells12081168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by an extra copy of chromosome 21 that presents developmental dysfunction and intellectual disability. To better understand the cellular changes associated with DS, we investigated the cell composition in blood, brain, and buccal swab samples from DS patients and controls using DNA methylation-based cell-type deconvolution. We used genome-scale DNA methylation data from Illumina HumanMethylation450k and HumanMethylationEPIC arrays to profile cell composition and trace fetal lineage cells in blood samples (DS N = 46; control N = 1469), brain samples from various regions (DS N = 71; control N = 101), and buccal swab samples (DS N = 10; control N = 10). In early development, the number of cells from the fetal lineage in the blood is drastically lower in DS patients (Δ = 17.5%), indicating an epigenetically dysregulated maturation process for DS patients. Across sample types, we observed significant alterations in relative cell-type proportions for DS subjects compared with the controls. Cell-type proportion alterations were present in samples from early development and adulthood. Our findings provide insight into DS cellular biology and suggest potential cellular interventional targets for DS.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (Z.Z.); (H.G.S.); (B.C.C.)
| | - Hannah G. Stolrow
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (Z.Z.); (H.G.S.); (B.C.C.)
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (Z.Z.); (H.G.S.); (B.C.C.)
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Lucas A. Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (Z.Z.); (H.G.S.); (B.C.C.)
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
4
|
Gensous N, Sala C, Pirazzini C, Ravaioli F, Milazzo M, Kwiatkowska KM, Marasco E, De Fanti S, Giuliani C, Pellegrini C, Santoro A, Capri M, Salvioli S, Monti D, Castellani G, Franceschi C, Bacalini MG, Garagnani P. A Targeted Epigenetic Clock for the Prediction of Biological Age. Cells 2022; 11:cells11244044. [PMID: 36552808 PMCID: PMC9777448 DOI: 10.3390/cells11244044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Epigenetic clocks were initially developed to track chronological age, but accumulating evidence indicates that they can also predict biological age. They are usually based on the analysis of DNA methylation by genome-wide methods, but targeted approaches, based on the assessment of a small number of CpG sites, are advisable in several settings. In this study, we developed a targeted epigenetic clock purposely optimized for the measurement of biological age. The clock includes six genomic regions mapping in ELOVL2, NHLRC1, AIM2, EDARADD, SIRT7 and TFAP2E genes, selected from a re-analysis of existing microarray data, whose DNA methylation is measured by EpiTYPER assay. In healthy subjects (n = 278), epigenetic age calculated using the targeted clock was highly correlated with chronological age (Spearman correlation = 0.89). Most importantly, and in agreement with previous results from genome-wide clocks, epigenetic age was significantly higher and lower than expected in models of increased (persons with Down syndrome, n = 62) and decreased (centenarians, n = 106; centenarians' offspring, n = 143; nutritional intervention in elderly, n = 233) biological age, respectively. These results support the potential of our targeted epigenetic clock as a new marker of biological age and open its evaluation in large cohorts to further promote the assessment of biological age in healthcare practice.
Collapse
Affiliation(s)
- Noémie Gensous
- Department of Internal Medicine and Clinical Immunology, CHU Bordeaux (Groupe Hospitalier Saint-André), 33077 Bordeaux, France
- UMR/CNRS 5164, ImmunoConcEpT, CNRS, University of Bordeaux, 33076 Bordeaux, France
| | - Claudia Sala
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Chiara Pirazzini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy
| | - Francesco Ravaioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Maddalena Milazzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | | | - Elena Marasco
- Personal Genomics S.R.L., Via Roveggia, 43/B, 37134 Verona, Italy
| | - Sara De Fanti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology, Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Camilla Pellegrini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
- Interdepartmental Center, “Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)”, University of Bologna, 40126 Bologna, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
- Interdepartmental Center, “Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)”, University of Bologna, 40126 Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
- Interdepartmental Center, “Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)”, University of Bologna, 40126 Bologna, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Gastone Castellani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging, Department of Applied Mathematics, Lobachevsky University, 603105 Nizhny Novgorod, Russia
| | - Maria Giulia Bacalini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy
- Correspondence: ; Tel.: +39-051-6225977
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
- Interdepartmental Center, “Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)”, University of Bologna, 40126 Bologna, Italy
- Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, 40138 Bologna, Italy
- Department of Laboratory Medicine, Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, 14152 Huddinge, Sweden
| |
Collapse
|