1
|
Yuan X, Liu R, Wei M, Li H, Sun J, Ji H. Fish oil replacement with different vegetable oils in Onychostoma macrolepis: Effects on fatty acid metabolism based on whole-body fatty acid balance method and genes expression. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1583-1603. [PMID: 38739220 DOI: 10.1007/s10695-024-01357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
To evaluate the fatty acid (FA) metabolism status and possibility as a DHA source of farmed Onychostoma macrolepis, a total of 168 fish (2.03 ± 0.23 g) were fed four diets supplemented with fish oil (FO), linseed oil (LO), soybean oil (SO), and a mixture of LO and SO oil (MO), respectively, for 70 days. Body FA compositions were modified reflecting dietary FAs. Comparing liver and intestine fatty acids with fish fed four diets, the content of ARA in fish fed SO was significantly higher than others (P < 0.05), but showed no difference in muscle. The tissue FA profile showed that the FO-fed group successfully deposited DHA, while the LO-fed group converted ALA to DHA effectively, as well as the liver and intestine EPA was notably highest in the FO group, whereas no difference between the FO and LO group in the muscle. The FA results showed that the DHA contents in the muscle of Onychostoma macrolepis are at a medium-high level compared with several other fish species with the highest aquaculture yield. Correspondingly, in the fish fed diet with LO, SO, and MO, the genes of most FA biosynthesis, transportation, and transcriptional regulation factors were increased in the liver and muscle, but no significant difference was observed in the gene expression of Elovl4b, FATP1, and FABP10 in the muscle. In addition, the enzyme activity involved in PUFA metabolism was higher in fish fed vegetable oil-based diets, corroborating the results of the gene expression. Increased in vivo elongase and desaturase (Δ5, Δ6, and Δ9) activities were recorded in fish fed fish oil-devoid diets, which resulted in the appearance of products associated with elongase and desaturase activities in fish. Besides, as the specific n-3 PUFA synthesis substrate, the dietary supplementation of ALA not only retains most of the nutrition value but also ensures the muscular texture, such as fiber diameter and density. It is concluded that farmed O. macrolepis owns strong n-3 LC-PUFA biosynthetic capacity and high DHA contents so it can be a good DHA source for the population.
Collapse
Affiliation(s)
- Xiangtong Yuan
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Ruofan Liu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Mingkui Wei
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Handong Li
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Zhao B, Peng Y, Itakura Y, Lizanda M, Haga Y, Satoh S, Navarro JC, Monroig Ó, Kabeya N. A complete biosynthetic pathway of the long-chain polyunsaturated fatty acids in an amphidromous fish, ayu sweetfish Plecoglossus altivelis (Stomiati; Osmeriformes). Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159498. [PMID: 38703945 DOI: 10.1016/j.bbalip.2024.159498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The biosynthetic capability of the long-chain polyunsaturated fatty acids (LC-PUFA) in teleosts are highly diversified due to evolutionary events such as gene loss and subsequent neo- and/or sub-functionalisation of enzymes encoded by existing genes. In the present study, we have comprehensively characterised genes potentially involved in LC-PUFA biosynthesis, namely one front-end desaturase (fads2) and eight fatty acid elongases (elovl1a, elovl1b, elovl4a, elovl4b, elovl5, elovl7, elovl8a and elovl8b) from an amphidromous teleost, Ayu sweetfish, Plecoglossus altivelis. Functional analysis confirmed Fads2 with Δ6, Δ5 and Δ8 desaturase activities towards multiple PUFA substrates and several Elovl enzymes exhibited elongation capacities towards C18-20 or C18-22 PUFA substrates. Consequently, P. altivelis possesses a complete enzymatic capability to synthesise physiologically important LC-PUFA including arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) from their C18 precursors. Interestingly, the loss of elovl2 gene in P. altivelis was corroborated by genomic and phylogenetic analyses. However, this constraint would possibly be overcome by the function of alternative Elovl enzymes, such as Elovl1b, which has not hitherto been functionally characterised in teleosts. The present study contributes novel insights into LC-PUFA biosynthesis in the relatively understudied teleost group, Osmeriformes (Stomiati), thereby enhancing our understanding of the complement of LC-PUFA biosynthetic genes within teleosts.
Collapse
Affiliation(s)
- Bo Zhao
- College of Fisheries, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan 316022, Zhejiang Province, China
| | - Yingying Peng
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Yuki Itakura
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Myriam Lizanda
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes 12595, Castellón, Spain
| | - Yutaka Haga
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Shuichi Satoh
- Department of Advanced Aquaculture Science, Fukui Prefectural University, Katsumi, 49-8-2 Obama, Fukui 917-0116, Japan
| | - Juan C Navarro
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes 12595, Castellón, Spain
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes 12595, Castellón, Spain
| | - Naoki Kabeya
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
3
|
Zheng Q, Liu L, Guo X, Zhu F, Huang Y, Qin Q, Huang X. Fish ELOVL7a is involved in virus replication via lipid metabolic reprogramming. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109530. [PMID: 38570120 DOI: 10.1016/j.fsi.2024.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.
Collapse
Affiliation(s)
- Qi Zheng
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lin Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xixi Guo
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Fengyi Zhu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China.
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
4
|
Orlova SY, Ruzina MN, Emelianova OR, Sergeev AA, Chikurova EA, Orlov AM, Mugue NS. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes (Basel) 2024; 15:726. [PMID: 38927661 PMCID: PMC11202958 DOI: 10.3390/genes15060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.
Collapse
Affiliation(s)
- Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Maria N. Ruzina
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Olga R. Emelianova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Sergeev
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Evgeniya A. Chikurova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
| | - Nikolai S. Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Laboratory of Genome Evolution and Speciation, Institute of Developmental Biology Russian Academy of Sciences, 117808 Moscow, Russia
| |
Collapse
|
5
|
Dong G, Xu S, Shi S. De Novo Biosynthesis of Free Vaccenic Acid with a Low Content of Oleic Acid in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16204-16211. [PMID: 37856078 DOI: 10.1021/acs.jafc.3c04793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Omega-7 (ω-7) fatty acids have potential application in the fields of nutraceutical, agricultural, and food industry. The natural ω-7 fatty acids are currently from plants or vegetable oils, which are unsustainable and limited by the availability of plant sources. Here, we developed an innovative biosynthetic route to produce vaccenic acid (C18:1 ω-7) while minimizing oleic acid (C18:1 ω-9) content in Saccharomyces cerevisiae. We have engineered S. cerevisiaeto produce C18:1 ω-7 by expressing a fatty acid elongase from Rattus norvegicus. To reduce the content of C18:1 ω-9, the endogenous desaturase Ole1 was replaced by the desaturase, which has specific activity on palmitoyl-coenzyme A (C16:0-CoA). Finally, the production of free C18:1 ω-7 was improved by optimizing the source of cytochrome b5 and overexpressing endoplasmic reticulum chaperones. After combining these strategies, the yield of C18:1 ω-7 was increased from 0 to 9.3 mg/g DCW and C18:1 ω-9 was decreased from 25.2 mg/g DCW to 1.6 mg/g DCW. This work shows a de novo synthetic pathway to produce the highest amount of free C18:1 ω-7 with a low content of C18:1 ω-9 in S. cerevisiae.
Collapse
Affiliation(s)
- Genlai Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| |
Collapse
|
6
|
Sukumaran S, Sebastian W, Gopalakrishnan A, Mathew OK, Vysakh VG, Rohit P, Jena JK. The sequence and de novo assembly of the genome of the Indian oil sardine, Sardinella longiceps. Sci Data 2023; 10:565. [PMID: 37626109 PMCID: PMC10457283 DOI: 10.1038/s41597-023-02481-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The Indian oil sardine, Sardinella longiceps, is a widely distributed and commercially important small pelagic fish of the Northern Indian Ocean. The genome of the Indian oil sardine has been characterized using Illumina and Nanopore platforms. The assembly is 1.077 Gb (31.86 Mb Scaffold N50) in size with a repeat content of 23.24%. The BUSCO (Benchmarking Universal Single Copy Orthologues) completeness of the assembly is 93.5% when compared with Actinopterygii (ray finned fishes) data set. A total of 46316 protein coding genes were predicted. Sardinella longiceps is nutritionally rich with high levels of omega-3 polyunsaturated fatty acids (PUFA). The core genes for omega-3 PUFA biosynthesis, such as Elovl 1a and 1b,Elovl 2, Elovl 4a and 4b,Elovl 8a and 8b,and Fads 2, were observed in Sardinella longiceps. The presence of these genes may indicate the PUFA biosynthetic capability of Indian oil sardine, which needs to be confirmed functionally.
Collapse
Affiliation(s)
- Sandhya Sukumaran
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India.
| | - Wilson Sebastian
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - A Gopalakrishnan
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Oommen K Mathew
- Agrigenome Labs Pvt. Ltd., Kakkanad, Kochi, Kerala, 682042, India
| | - V G Vysakh
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Prathibha Rohit
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - J K Jena
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| |
Collapse
|
7
|
Siddiqui AJ, Jahan S, Chaturvedi S, Siddiqui MA, Alshahrani MM, Abdelgadir A, Hamadou WS, Saxena J, Sundararaj BK, Snoussi M, Badraoui R, Adnan M. Therapeutic Role of ELOVL in Neurological Diseases. ACS OMEGA 2023; 8:9764-9774. [PMID: 36969404 PMCID: PMC10034982 DOI: 10.1021/acsomega.3c00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Fatty acids play an important role in controlling the energy balance of mammals. De novo lipogenesis also generates a significant amount of lipids that are endogenously produced in addition to their ingestion. Fatty acid elongation beyond 16 carbons (palmitic acid), which can lead to the production of very long chain fatty acids (VLCFA), can be caused by the rate-limiting condensation process. Seven elongases, ELOVL1-7, have been identified in mammals and each has a unique substrate specificity. Researchers have recently developed a keen interest in the elongation of very long chain fatty acids protein 1 (ELOVL1) enzyme as a potential treatment for a variety of diseases. A number of neurological disorders directly or indirectly related to ELOVL1 involve the elongation of monounsaturated (C20:1 and C22:1) and saturated (C18:0-C26:0) acyl-CoAs. VLCFAs and ELOVL1 have a direct impact on the neurological disease. Other neurological symptoms such as ichthyotic keratoderma, spasticity, and hypomyelination have also been linked to the major enzyme (ELOVL1). Recently, ELOVL1 has also been heavily used to treat a number of diseases. The current review focuses on in-depth unique insights regarding the role of ELOVL1 as a therapeutic target and associated neurological disorders.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Sadaf Jahan
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Swati Chaturvedi
- Department
of Pharmaceutics and Pharmacokinetics, Pre-Clinical North, Lab-106, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Maqsood Ahmed Siddiqui
- Department
of Zoology, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department
of Clinical Laboratory Sciences, Faculty of Applied Medial Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Abdelmushin Abdelgadir
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Walid Sabri Hamadou
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Juhi Saxena
- Department
of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, NH-95, Chandigarh State Hwy, Ludhiana, Punjab 140413, India
| | - Bharath K. Sundararaj
- School
of Dental Medicine, Department of Cellular and Molecular Biology, Boston University, Medical Campus Boston, Boston, Massachusetts 02215, United States
| | - Mejdi Snoussi
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Riadh Badraoui
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| |
Collapse
|
8
|
Genome-wide identification and expression profile of Elovl genes in threadfin fish Eleutheronema. Sci Rep 2023; 13:1080. [PMID: 36658196 PMCID: PMC9852283 DOI: 10.1038/s41598-023-28342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFA), including eicosapentaenoic acid and docosahexaenoic acid, are the essential fatty acids for organs to maintain various biological functions and processes. The threadfin fish Eleutheronema, with its rich nutritional value especially the high fatty acid contents, has become one of the promising aquaculture species in China and the potential food source of fatty acids for human consumption. However, the molecular basis underlying the biosynthesis of fatty acids in Eleutheronema species is still unknown. The elongation of the very long-chain fatty acids (Elovl) gene family in fish plays several critical roles in LC-PUFA synthesis. Therefore, in the present study, we performed genome-wide identification of the Elovl gene family to study their evolutionary relationships and expression profiles in two threadfin fish species Eleutheronema tetradactylum and Eleutheronema rhadinum, the first representatives from the family Eleutheronema. Phylogenetic analysis revealed that the Elovl genes in Eleutheronema were classified into six subfamilies (elovl1a/1b, elovl4a/4b, elovl5, elovl6/6 l, elovl7a, elovl8b). Phylogenetic, gene structure, motif, and conserved domain analysis indicated that the Elovl genes were highly conserved within the same subfamily in Eleutheronema. In addition, the Elovl genes were distributed in 7/26 chromosomes, while the duplicated gene pair, elovl4a and elovl4b, showed collinear relationships. The predicted secondary structure patterns and the 3D models revealed the highly similar functions and evolutionary conserved structure of Elovl proteins in Eleutheronema. The selection pressure analysis revealed that Elovl genes underwent strong purifying selection during evolution, suggesting that their functions might be evolutionarily conserved in Eleutheronema. Additionally, the expression patterns of Elovl genes in different tissues and species were distinct, indicating the possible functional divergence during evolution in the Eleutheronema genus. Collectively, we provided the first comprehensive genomic information on Elovl genes in threadfin fish Eleutheronema. This study enhanced the understanding of the underlying mechanisms of fatty acids biosynthesis in Eleutheronema, and provided new insights on breeding new varieties of fatty acids-enriched fish with potential benefits to farmers and the health of consumers.
Collapse
|
9
|
Chen Q, Wei T, Yang B, Li S, Ge L, Zhou A, Xie S. The impact of deleting the mitfa gene in zebrafish on the intestinal microbiota community. Gene 2022; 846:146870. [PMID: 36075325 DOI: 10.1016/j.gene.2022.146870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022]
Abstract
To explore the relationship between the mitfa gene and intestinal microbiota, the 16S rRNA gene amplicon sequencing was performed to compare the intestinal microbiota composition of the mitfa knockout zebrafish line (CKO group) and the wild-type zebrafish (WT group) in this study. The results showed that the Fusobacteria and Firmicutes were significantly decreased and the Dependentiae and Patescibacteria were significantly increased in the CKO group at the phylum level. Furthermore, the relative abundance of Citrobacter, Gordonia, Mesorhizobium, Legionella, and Bradyrhizobium were extremely higher in the CKO group, whereas the other four genera Nocardia, Pannonibacter, Shinella, and Cetobacterium were significantly declined in the CKO group at the genus level. Due to these changed intestinal microbiota appear to be related to lipid metabolism and immunity, eight lipid metabolism-related genes and nine inflammation-related genes were detected in the intestinal. The results showed that the expression levels of these genes were significant differences between the CKO and WT group. These results indicated that the deletion of mitfa can affect the expression levels of immune and metabolism-related genes, and causing changes in the composition of the intestinal microbiota.
Collapse
Affiliation(s)
- Qingshi Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Tianli Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Bing Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Siying Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liangjun Ge
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China.
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Sam KK, Lau NS, Kuah MK, Lading EA, Shu-Chien AC. A complete inventory of long-chain polyunsaturated fatty acid biosynthesis pathway enzymes in the miniaturized cyprinid Paedocypris micromegethes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:817-838. [PMID: 35643977 DOI: 10.1007/s10695-022-01082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The capacity for long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis activity in a species depends on the enzymatic activities of fatty acyl desaturase (Fads) and elongation of very long-chain fatty acid (Elovl). The miniaturized fish Paedocypris micromegethes is a developmentally truncated cyprinid living in highly acidic water conditions in tropical peat swamps. The capacity for LC-PUFA biosynthesis in this species, which has a reduced genome size, is unknown. A high-quality de novo transcriptome assembly enabled the identification of a putative Fads2 and four Elovl. The Fads2 was verified as a P. micromegethes Fads2 ortholog with in vitro Δ5 and Δ6 activities. The Elovl sequences were established as an Elovl5, Elovl2, and two Elovl4 paralogs, namely Elovl4a and Elovl4b. These Elovl enzymes, mainly Elovl5 and Elovl2, fulfill the necessary C18, C20, and C22 PUFA elongation steps for LC-PUFA biosynthesis. Collectively, these results validate the presence of a complete repertoire of LC-PUFA biosynthesis enzymes in a peat swamp miniatured freshwater fish.
Collapse
Affiliation(s)
- Ka-Kei Sam
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Meng-Kiat Kuah
- Lab-Ind Resource Sdn. Bhd, 48300, Bukit Beruntung, Selangor, Malaysia
| | - Engkamat Anak Lading
- Forest Department Sarawak, Forest Department HQ, Level 11, Baitul Makmur II, Medan Raya, Petra Jaya, 93050, Kuching, Sarawak, Malaysia
| | - Alexander Chong Shu-Chien
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
11
|
The repertoire of the elongation of very long-chain fatty acids (Elovl) protein family is conserved in tambaqui (Colossoma macropomum): Gene expression profiles offer insights into the sexual differentiation process. Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110749. [PMID: 35470007 DOI: 10.1016/j.cbpb.2022.110749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022]
Abstract
Elongation of very long-chain fatty acids (Elovl) proteins are critical players in the regulation of the length of a fatty acid. At present, eight members of the Elovl family (Elovl1-8), displaying a characteristic fatty acid substrate specificity, have been identified in vertebrates, including teleost fish. In general, Elovl1, Elovl3, Elovl6 and Elovl7 exhibit a substrate preference for saturated and monounsaturated fatty acids, while Elovl2, Elovl4, Elovl5 and Elovl8 use polyunsaturated fatty acids (PUFA) as substrates. PUFA elongases have received considerable attention in aquatic animals due to their involvement in the conversion of C18 PUFAs to long-chain polyunsaturated fatty acids (LC-PUFA). Here, we identified the full repertoire of elovl genes in the tambaqui Colossoma macropomum genome. A detailed phylogenetic and synteny analysis suggests a conservation of these genes among teleosts. Furthermore, based on RNAseq gene expression data, we discovered a gender bias expression of elovl genes during sex differentiation of tambaqui, toward future males. Our findings suggest a role of Elovl enzymes and fatty acid metabolism in tambaqui sexual differentiation.
Collapse
|
12
|
Kyselová L, Vítová M, Řezanka T. Very long chain fatty acids. Prog Lipid Res 2022; 87:101180. [PMID: 35810824 DOI: 10.1016/j.plipres.2022.101180] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Very long chain fatty acids (VLCFAs) are important components of various lipid classes in most organisms, from bacteria to higher plants and mammals, including humans. VLCFAs, or very long chain polyunsaturated fatty acids (VLCPUFAs), can be defined as fatty acids with 23 or more carbon atoms in the molecule. The main emphasis in this review is on the analysis of these acids, including obtaining standards from natural sources or their synthesis. Furthermore, the occurrence and analysis of these compounds in both lower (bacteria, invertebrates) and higher organisms (flowering plants or mammals) are discussed in detail. Attention is paid to their biosynthesis, especially the elongation of very long chain fatty acids protein (ELOVL4). This review deals with papers describing these very interesting compounds, whose chemical, biochemical and biological properties have not been fully explored.
Collapse
Affiliation(s)
- Lucie Kyselová
- Research Institute of Brewing and Malting, Lípová 511, 120 44 Prague, Czech Republic.
| | - Milada Vítová
- Institute of Botany, Czech Academy of Sciences, Centre for Phycology, Dukelská 135, 379 01 Třeboň, Czech Republic.
| | - Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
13
|
Genome-wide characterization of the Elovl gene family in Gymnocypris przewalskii and their potential roles in adaptation to cold temperature. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110759. [PMID: 35605755 DOI: 10.1016/j.cbpb.2022.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022]
Abstract
The elongase of the very long-chain fatty acids (Elovls) gene family in fish has more diversity than in other vertebrates, which plays several critical roles in fatty acid synthesis and low-temperature stress adaptation. Gymnocypris przewalskii settles in plateau lakes with cold and resource-poor settings, and the evolution and function of Elovl genes in this fish are unknown. In the study, to identify the Elovl genes in G. przewalskii, the genome-wide identification and phylogenetic analysis of the gene members have been conducted with the expression profile of different tissues under cold stress. Fatty acid compositions, meanwhile, were detected in both the hepatopancreas and skeletal muscle during cold adaptation. A total of 21 Elovl members have been identified from the genome of G. przewalskii, belonging to Elovl1, Elovl2, Elovl4, Elovl5, Elovl6, Elovl7, and Elovl8 subgroups, with conserved ELO domain and four common motifs. Phylogenetic analysis revealed that subfamilies Elovl1 and Elovl7, Elov2, and Elovl5 have a closer genetic relationship, while the Elovl6 class was classed into an independent clade. Synteny analysis showed that whole-genome duplication, tandem duplicates, and gene conversion could drive the Elovls family expansion in G. przewalskii. The Ka/Ks and RELAX analysis showed distinguishing positive selection traces in ORF sequences of gpElovl2. Transcriptional data showed that different gpElovl subtypes exhibited a tissue-specific expression. Subtypes gpElovl1a, gpElovl2 and gpElovl6l were highly expressed induced by cold stress, as well as fatty acid metabolism-related genes, including Acyl-CoA synthetase long-chain gene (Ascl1a-1) and Stearyl-CoA desaturase gene (Scd1a-1). In addition, monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) contents of the hepatopancreas and skeletal muscle were significantly increased under 15-day cold stress. These results provide a better understanding of fish Elovl genes and their roles in cold adaptation.
Collapse
|
14
|
Molecular Characterization, Tissue Distribution and Differential Nutritional Regulation of Three n-3 LC-PUFA Biosynthesis-Related Genes in Hybrid Grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Animals (Basel) 2022; 12:ani12030234. [PMID: 35158563 PMCID: PMC8833367 DOI: 10.3390/ani12030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Elongases of very long-chain fatty acids (Elovls) and fatty acid desaturases (Fads) are crucial enzymes involved in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs). In this paper, we report the molecular cloning and characterization of three genes from the marine teleost Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂, and analyzed tissue distribution and their expression in response to dietary n-3 LC-PUFA levels after a 42-day feeding experiment. The elovl5, elovl8 and fads2 genes encoded 294, 263 and 445 amino acids, respectively, which exhibited all the characteristics of the Elovl and Fads family. Tissue distribution analysis revealed that elovl5, elovl8 and fads2 were widely transcribed in various tissues, with the highest level in the brain, as described in other carnivorous marine teleosts. The transcript levels of elovl5, elovl8 and fads2 in the liver were significantly affected by dietary n-3 LC-PUFA, and higher LC-PUFA levels repressed their expression. These results demonstrated, for the first time, the presence and nutritional modulation of elovl5, elovl8 and fads2 cDNA in the juvenile hybrid grouper. Further studies are needed to determine the functional characterization of these genes and explore the mechanism of these genes when regulated by dietary fatty lipid profiles in this species.
Collapse
|
15
|
Monroig Ó, Shu-Chien A, Kabeya N, Tocher D, Castro L. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions. Prog Lipid Res 2022; 86:101157. [DOI: 10.1016/j.plipres.2022.101157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
|