1
|
Zhao Y, Zhang H, Zhou B, Wan R, Yan Y, He R, Yang X, Sha Q, Liang X. The splicing factor SF3B1 is essential for proper alternative splicing and zygotic genome activation in early porcine embryos. Int J Biol Macromol 2024; 282:137401. [PMID: 39521214 DOI: 10.1016/j.ijbiomac.2024.137401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Alternative splicing (AS) is a pivotal posttranscriptional regulatory mechanism that is involved in embryonic development. However, the roles of AS in specific developmental events, especially the zygotic genome activation (ZGA) of porcine early embryos, remain unclear. In this study, we demonstrated that alternative splicing events (ASEs) were most prevalent in mammalian embryos during ZGA and that skipped exons were the predominant splicing pattern. When splicing factor 3B subunit 1 (SF3B1) was disrupted by the inhibitor pladienolide B (PlaB), we observed that porcine embryos were markedly arrested at the 4-cell stage. Concurrently, the main ZGA genes, namely, DPPA2, EIF6, and SORD, underwent aberrant splicing indicative of the failure of ZGA. Moreover, embryonic metabolic homeostasis was significantly disrupted at the 4-cell stage by SF3B1 inhibition, resulting in increases in the LDHA/LDHB ratio and lactate levels. Interestingly, the levels of the histone lactylation modifications pan-Kla and H4K5la also increased. Our findings enhance our understanding of early mammalian embryonic development, reveal the crucial role of porcine early embryogenesis, and help to resolve reproductive difficulties related to embryonic development.
Collapse
Affiliation(s)
- Yanan Zhao
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Hua Zhang
- Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Benliang Zhou
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Runtian Wan
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Yujun Yan
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Rijing He
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiaogan Yang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Qianqian Sha
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Labora-tory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510006, China.
| | - Xingwei Liang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
2
|
Fan J, Liu C, Zhao Y, Xu Q, Yin Z, Liu Z, Mu Y. Single-Cell RNA Sequencing Reveals Differences in Chromatin Remodeling and Energy Metabolism among In Vivo-Developed, In Vitro-Fertilized, and Parthenogenetically Activated Embryos from the Oocyte to 8-Cell Stages in Pigs. Animals (Basel) 2024; 14:465. [PMID: 38338108 PMCID: PMC10854501 DOI: 10.3390/ani14030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
In vitro-fertilized (IVF) and parthenogenetically activated (PA) embryos, key to genetic engineering, face more developmental challenges than in vivo-developed embryos (IVV). We analyzed single-cell RNA-seq data from the oocyte to eight-cell stages in IVV, IVF, and PA porcine embryos, focusing on developmental differences during early zygotic genome activation (ZGA), a vital stage for embryonic development. (1) Our findings reveal that in vitro embryos (IVF and PA) exhibit more similar developmental trajectories compared to IVV embryos, with PA embryos showing the least gene diversity at each stage. (2) Significant differences in maternal mRNA, particularly affecting mRNA splicing, energy metabolism, and chromatin remodeling, were observed. Key genes like SMARCB1 (in vivo) and SIRT1 (in vitro) played major roles, with HDAC1 (in vivo) and EZH2 (in vitro) likely central in their complexes. (3) Across different types of embryos, there was minimal overlap in gene upregulation during ZGA, with IVV embryos demonstrating more pronounced upregulation. During minor ZGA, global epigenetic modification patterns diverged and expanded further. Specifically, in IVV, genes, especially those linked to H4 acetylation and H2 ubiquitination, were more actively regulated compared to PA embryos, which showed an increase in H3 methylation. Additionally, both types displayed a distinction in DNA methylation. During major ZGA, IVV distinctively upregulated genes related to mitochondrial regulation, ATP synthesis, and oxidative phosphorylation. (4) Furthermore, disparities in mRNA degradation-related genes between in vivo and in vitro embryos were more pronounced during major ZGA. In IVV, there was significant maternal mRNA degradation. Maternal genes regulating phosphatase activity and cell junctions, highly expressed in both in vivo and in vitro embryos, were degraded in IVV in a timely manner but not in in vitro embryos. (5) Our analysis also highlighted a higher expression of many mitochondrially encoded genes in in vitro embryos, yet their nucleosome occupancy and the ATP8 expression were notably higher in IVV.
Collapse
Affiliation(s)
- Jianlin Fan
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chang Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunjing Zhao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
| | - Qianqian Xu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhi Yin
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (J.F.); (C.L.); (Y.Z.); (Q.X.); (Z.Y.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Lipinska P, Pawlak P, Warzych E. Species and embryo genome origin affect lipid droplets in preimplantation embryos. Front Cell Dev Biol 2023; 11:1187832. [PMID: 37250899 PMCID: PMC10217358 DOI: 10.3389/fcell.2023.1187832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Mammalian embryo development is affected by multiple metabolism processes, among which energy metabolism seems to be crucial. Therefore the ability and the scale of lipids storage in different preimplantation stages might affect embryos quality. The aim of the present studies was to show a complex characterization of lipid droplets (LD) during subsequent embryo developmental stages. It was performed on two species (bovine and porcine) as well as on embryos with different embryo origin [after in vitro fertilization (IVF) and after parthenogenetic activation (PA)]. Embryos after IVF/PA were collected at precise time points of development at the following stages: zygote, 2-cell, 4-cell, 8/16-cell, morula, early blastocyst, expanded blastocyst. LD were stained with BODIPY 493/503 dye, embryos were visualized under a confocal microscope and images were analyzed with the ImageJ Fiji software. The following parameters were analyzed: lipid content, LD number, LD size and LD area within the total embryo. The most important results show that lipid parameters in the IVF vs. PA bovine embryos differ at the most crucial moments of embryonic development (zygote, 8-16-cell, blastocyst), indicating possible dysregulations of lipid metabolism in PA embryos. When bovine vs. porcine species are compared, we observe higher lipid content around EGA stage and lower lipid content at the blastocyst stage for bovine embryos, which indicates different demand for energy depending on the species. We conclude that lipid droplets parameters significantly differ among developmental stages and between species but also can be affected by the genome origin.
Collapse
|
4
|
Awad Hegazy A, Ibraheem Al-Qtaitat A, Awad Hegazy R. A new hypothesis may explain human parthenogenesis and ovarian teratoma: A review study. Int J Reprod Biomed 2023; 21:277-284. [PMID: 37260553 PMCID: PMC10227352 DOI: 10.18502/ijrm.v21i4.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/24/2022] [Accepted: 02/28/2023] [Indexed: 06/02/2023] Open
Abstract
Parthenogenesis (PG) is a rare phenomenon occurring in humans, and understanding this may help us develop an explanation for such occurrences. Moreover, it may help reveal the cause of idiopathic ovarian teratoma (OT). We aim to explain the occurrence of PG and OT in humans based on a new hypothesis. Previous literature has been searched through relevant scientific websites and international journals on the causes and mechanisms of PG and OT in humans. The previous literature on human PG was sparse and mostly contained case reports. It appears that human PG is not as rare as previously reported but may occur spontaneously, resulting in OT formation. The difference between PG and sexual reproduction is that PG has no embryonic diversity. The biopsied embryonic samples in the PG correspond exclusively to those of the maternal side. Spontaneous PG in humans often degrades or leads to formation of OT. The cause and mechanism of spontaneous PG remain unclear in the available literature. Here, we hypothesized that in some cases the secondary oocyte and first polar body enclosed in the zona pellucida may fuse together to form a single cell that restores the diploid number of chromosomes and initiates cell division to form PG. It may go unnoticed or be represented by the OT. Future studies are recommended to investigate this hypothesis.
Collapse
Affiliation(s)
- Abdelmonem Awad Hegazy
- Faculty of Dentistry, Zarqa University, Zarqa City, Jordan
- Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| | - Aiman Ibraheem Al-Qtaitat
- Faculty of Dentistry, Zarqa University, Zarqa City, Jordan
- Faculty of Medicine, Mutah University, Alkarak, Jordan
| | | |
Collapse
|