1
|
Bezrukova AI, Basharova KS, Baydakova GV, Zakharova EY, N Pchelina S, Usenko TS. Dose-Dependent Alterations of Lysosomal Activity and Alpha-Synuclein in Peripheral Blood Monocyte-Derived Macrophages and SH-SY5Y Neuroblastoma Cell Line by upon Inhibition of MTOR Protein Kinase - Assessment of the Prospects of Parkinson's Disease Therapy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1300-1312. [PMID: 39218026 DOI: 10.1134/s0006297924070113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 06/09/2024] [Indexed: 09/04/2024]
Abstract
To date, the molecular mechanisms of the common neurodegenerative disorder Parkinson's disease (PD) are unknown and, as a result, there is no neuroprotective therapy that may stop or slow down the process of neuronal cell death. The aim of the current study was to evaluate the prospects of using the mTOR molecule as a potential target for PD therapy due to the dose-dependent effect of mTOR kinase activity inhibition on cellular parameters associated with, PD pathogenesis. The study used peripheral blood monocyte-derived macrophages and SH-SY5Y neuroblastoma cell line. As a result, we have for the first time showed that inhibition of mTOR by Torin1 only at a concentration of 100 nM affects the level of the lysosomal enzyme glucocerebrosidase (GCase), encoded by the GBA1 gene. Mutations in GBA1 are considered a high-risk factor for PD development. This concentration led a decrease in pathological phosphorylated alpha-synuclein (Ser129), an increase in its stable tetrameric form with no changes in the lysosomal enzyme activities and concentrations of lysosphingolipids. Our findings suggest that inhibition of the mTOR protein kinase could be a promising approach for developing therapies for PD, particularly for GBA1-associated PD.
Collapse
Affiliation(s)
- Anastasia I Bezrukova
- Konstantinov Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Katerina S Basharova
- Konstantinov Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | | | | | - Sofya N Pchelina
- Konstantinov Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Tatiana S Usenko
- Konstantinov Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| |
Collapse
|
2
|
Blumenreich S, Nehushtan T, Kupervaser M, Shalit T, Gabashvili A, Joseph T, Milenkovic I, Hardy J, Futerman AH. Large-scale proteomics analysis of five brain regions from Parkinson's disease patients with a GBA1 mutation. NPJ Parkinsons Dis 2024; 10:33. [PMID: 38331996 PMCID: PMC10853186 DOI: 10.1038/s41531-024-00645-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Despite being the second most common neurodegenerative disorder, little is known about Parkinson's disease (PD) pathogenesis. A number of genetic factors predispose towards PD, among them mutations in GBA1, which encodes the lysosomal enzyme acid-β-glucosidase. We now perform non-targeted, mass spectrometry based quantitative proteomics on five brain regions from PD patients with a GBA1 mutation (PD-GBA) and compare to age- and sex-matched idiopathic PD patients (IPD) and controls. Two proteins were differentially-expressed in all five brain regions whereas significant differences were detected between the brain regions, with changes consistent with loss of dopaminergic signaling in the substantia nigra, and activation of a number of pathways in the cingulate gyrus, including ceramide synthesis. Mitochondrial oxidative phosphorylation was inactivated in PD samples in most brain regions and to a larger extent in PD-GBA. This study provides a comprehensive large-scale proteomics dataset for the study of PD-GBA.
Collapse
Affiliation(s)
| | | | - Meital Kupervaser
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tali Shalit
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alexandra Gabashvili
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tammar Joseph
- Department of Biomolecular Sciences, Rehovot, 76100, Israel
| | - Ivan Milenkovic
- Department of Biomolecular Sciences, Rehovot, 76100, Israel
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - John Hardy
- Department of Neurogenerative Disease, UCL Dementia Research Institute, University College London, London, WC1N 3BG, UK
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Rehovot, 76100, Israel.
- The Joseph Meyerhof Professor of Biochemistry at the Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Oleksy C, Massart F, Goldwurm S, Arado A, Arena G, Boussaad I, Krüger R. Generation and characterization of induced pluripotent stem cells from a Parkinson's disease patient carrying the digenic LRRK2 p.G2019S and GBA1 p.N409S mutations. Stem Cell Res 2023; 72:103212. [PMID: 37832355 DOI: 10.1016/j.scr.2023.103212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
We describe an induced pluripotent stem cell (iPSC) line that was derived from fibroblasts obtained from a Parkinson's disease (PD) patient carrying the p.G2019S mutation in the LRRK2 gene and the p.N409S mutation in the GBA1 gene. iPSCs were generated via Sendai virus transduction of Yamanaka factors. The presence of GBA1 p.N409S and LRRK2 p.G2019S was confirmed by Sanger sequencing. The iPSCs express pluripotency markers, are capable of in vitro differentiation into the three germ layers and have a normal karyotype. The newly generated line will be used for in vitro PD modeling by investigating the role of each mutation in iPSC-derived dopaminergic neurons.
Collapse
Affiliation(s)
- Christiane Oleksy
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - François Massart
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Stefano Goldwurm
- University of Turin, Department of Neuroscience, Italy; Parkinson Institute, ASST "Pini-CTO", Milano, Italy
| | - Alessia Arado
- Laboratory of Human Genetics - IRCCS Istituto G. Gaslini, Genova, Italy
| | - Giuseppe Arena
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Ibrahim Boussaad
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg; Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg; Parkinson Research Clinic, Center Hospitalier de Luxembourg (CHL), Luxembourg.
| |
Collapse
|
4
|
Usenko T, Bezrukova A, Rudenok MM, Basharova K, Shadrina MI, Slominsky PA, Zakharova E, Pchelina S. Whole Transcriptome Analysis of Substantia Nigra in Mice with MPTP-Induced Parkinsonism Bearing Defective Glucocerebrosidase Activity. Int J Mol Sci 2023; 24:12164. [PMID: 37569538 PMCID: PMC10418497 DOI: 10.3390/ijms241512164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Mutations in the GBA1 gene represent the major genetic risk factor for Parkinson's disease (PD). The lysosomal enzyme beta-glucocerebrosidase (GCase) encoded by the GBA1 gene participates in both the endolysosomal pathway and the immune response. Disruption of these mechanisms is involved in PD pathogenesis. However, molecular mechanisms of PD associated with GBA1 mutations (GBA-PD) are unknown today in particular due to the partial penetrance of GBA1 variants in PD. The modifiers of GBA1 penetrance have not been elucidated. We characterized the transcriptomic profiles of cells from the substantia nigra (SN) of mice with co-injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and selective inhibitor of GCase activity (conduritol-β-epoxide, (CBE)) to mimic PD bearing GCase dysfunction (MPTP+CBE), mice treated with MPTP, mice treated with CBE and control mice treated with injection of sodium chloride (NaCl) (vehicle). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Functional clustering of differentially represented transcripts revealed more processes associated with the functioning of neurogenesis, inflammation, apoptosis and autophagy in MPTP+CBE and MPTP mice than in vehicle mice, with a more pronounced alteration of autophagy processes in MPTP+CBE mice than in MPTP mice. The PI3K-Akt-mTOR signaling pathway may be considered a potential target for therapy in PD with GCase dysfunction.
Collapse
Affiliation(s)
- Tatiana Usenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Anastasia Bezrukova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Margarita M. Rudenok
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Katerina Basharova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
| | - Maria I. Shadrina
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Petr A. Slominsky
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Ekaterina Zakharova
- Research Center for Medical Genetics, Laboratory of Hereditary Metabolic Diseases, 115522 Moscow, Russia
| | - Sofya Pchelina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| |
Collapse
|
5
|
Lesage S, Trinh J. Special Issue “Parkinson’s Disease: Genetics and Pathogenesis”. Genes (Basel) 2023; 14:genes14030737. [PMID: 36981007 PMCID: PMC10048160 DOI: 10.3390/genes14030737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Parkinson’s disease (PD) is a common and incurable neurodegenerative disease, affecting 1% of the population over the age of 65 [...]
Collapse
Affiliation(s)
- Suzanne Lesage
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), 75013 Paris, France
- Correspondence: ; Tel.: +33-(0)-1-57-27-46-80
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany;
| |
Collapse
|
6
|
Magistrelli L, Contaldi E, Vignaroli F, Gallo S, Colombatto F, Cantello R, Comi C. Immune Response Modifications in the Genetic Forms of Parkinson's Disease: What Do We Know? Int J Mol Sci 2022; 23:ijms23073476. [PMID: 35408836 PMCID: PMC8998358 DOI: 10.3390/ijms23073476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by loss of dopaminergic neurons in the pars compacta of the midbrain substantia nigra. PD pathophysiology is complex, multifactorial, and not fully understood yet. Nonetheless, recent data show that immune system hyperactivation with concomitant production of pro-inflammatory cytokines, both in the central nervous system (CNS) and the periphery, is a signature of idiopathic PD. About 5% of PD patients present an early onset with a determined genetic cause, with either autosomal dominant or recessive inheritance. The involvement of immunity in the genetic forms of PD has been a matter of interest in several recent studies. In this review, we will summarize the main findings of this new and promising field of research.
Collapse
Affiliation(s)
- Luca Magistrelli
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy;
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (E.C.); (F.V.); (S.G.); (F.C.); (R.C.)
| | - Elena Contaldi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (E.C.); (F.V.); (S.G.); (F.C.); (R.C.)
- PhD Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, 28100 Novara, Italy
| | - Francesca Vignaroli
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (E.C.); (F.V.); (S.G.); (F.C.); (R.C.)
| | - Silvia Gallo
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (E.C.); (F.V.); (S.G.); (F.C.); (R.C.)
| | - Federico Colombatto
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (E.C.); (F.V.); (S.G.); (F.C.); (R.C.)
| | - Roberto Cantello
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (E.C.); (F.V.); (S.G.); (F.C.); (R.C.)
| | - Cristoforo Comi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (E.C.); (F.V.); (S.G.); (F.C.); (R.C.)
- Correspondence:
| |
Collapse
|
7
|
Terkelsen MH, Klaestrup IH, Hvingelby V, Lauritsen J, Pavese N, Romero-Ramos M. Neuroinflammation and Immune Changes in Prodromal Parkinson's Disease and Other Synucleinopathies. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S149-S163. [PMID: 35723115 PMCID: PMC9535563 DOI: 10.3233/jpd-223245] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 02/06/2023]
Abstract
Multiple lines of clinical and pre-clinical research support a pathogenic role for neuroinflammation and peripheral immune system dysfunction in Parkinson's disease. In this paper, we have reviewed and summarised the published literature reporting evidence of neuroinflammation and peripheral immune changes in cohorts of patients with isolated REM sleep behaviour disorder and non-manifesting carriers of GBA or LRRK2 gene mutations, who have increased risk for Parkinsonism and synucleinopathies, and could be in the prodromal stage of these conditions. Taken together, the findings of these studies suggest that the early stages of pathology in Parkinsonism involve activation of both the central and peripheral immune systems with significant crosstalk. We consider these findings with respect to those found in patients with clinical Parkinson's disease and discuss their possible pathological roles. Moreover, those factors possibly associated with the immune response, such as the immunomodulatory role of the affected neurotransmitters and the changes in the gut-brain axis, are also considered.
Collapse
Affiliation(s)
| | - Ida H. Klaestrup
- DANDRITE & Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Victor Hvingelby
- Department of Clinical Medicine – Nuclear Medicine and PET, Aarhus University, Aarhus, Denmark
| | - Johanne Lauritsen
- DANDRITE & Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nicola Pavese
- Department of Clinical Medicine – Nuclear Medicine and PET, Aarhus University, Aarhus, Denmark
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|