1
|
Kosarim NA, Fedulova AS, Shariafetdinova AS, Armeev GA, Shaytan AK. Molecular Dynamics Simulations of Nucleosomes Containing Histone Variant H2A.J. Int J Mol Sci 2024; 25:12136. [PMID: 39596203 PMCID: PMC11595175 DOI: 10.3390/ijms252212136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Histone proteins form the building blocks of chromatin-nucleosomes. Incorporation of alternative histone variants instead of the major (canonical) histones into nucleosomes is a key mechanism enabling epigenetic regulation of genome functioning. In humans, H2A.J is a constitutively expressed histone variant whose accumulation is associated with cell senescence, inflammatory gene expression, and certain cancers. It is sequence-wise very similar to the canonical H2A histones, and its effects on the nucleosome structure and dynamics remain elusive. This study employed all-atom molecular dynamics simulations to reveal atomistic mechanisms of structural and dynamical effects conferred by the incorporation of H2A.J into nucleosomes. We showed that the H2A.J C-terminal tail and its phosphorylated form have unique dynamics and interaction patterns with the DNA, which should affect DNA unwrapping and the availability of nucleosomes for interactions with other chromatin effectors. The dynamics of the L1-loop and the hydrogen bonding patterns inside the histone octamer were shown to be sensitive to single amino acid substitutions, potentially explaining the higher thermal stability of H2A.J nucleosomes. Taken together, our study demonstrated unique dynamical features of H2A.J-containing nucleosomes, which contribute to further understanding of the molecular mechanisms employed by H2A.J in regulating genome functioning.
Collapse
Affiliation(s)
- Nikita A. Kosarim
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (N.A.K.); (A.S.F.); (G.A.A.)
| | - Anastasiia S. Fedulova
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (N.A.K.); (A.S.F.); (G.A.A.)
| | | | - Grigoriy A. Armeev
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (N.A.K.); (A.S.F.); (G.A.A.)
| | - Alexey K. Shaytan
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (N.A.K.); (A.S.F.); (G.A.A.)
- Institute of Gene Biology, 119334 Moscow, Russia
| |
Collapse
|
2
|
Freyter BM, Abd Al-razaq MA, Hecht M, Rübe C, Rübe CE. Studies on Human Cultured Fibroblasts and Cutaneous Squamous Cell Carcinomas Suggest That Overexpression of Histone Variant H2A.J Promotes Radioresistance and Oncogenic Transformation. Genes (Basel) 2024; 15:851. [PMID: 39062630 PMCID: PMC11275829 DOI: 10.3390/genes15070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Cellular senescence in response to ionizing radiation (IR) limits the replication of damaged cells by causing permanent cell cycle arrest. However, IR can induce pro-survival signaling pathways that reduce the extent of radiation-induced cytotoxicity and promote the development of radioresistance. The differential incorporation of histone variant H2A.J has profound effects on higher-order chromatin organization and on establishing the epigenetic state of radiation-induced senescence. However, the precise epigenetic mechanism and function of H2A.J overexpression in response to IR exposure still needs to be elucidated. Methods: Primary (no target, NT) and genetically modified fibroblasts overexpressing H2A.J (H2A.J-OE) were exposed to 20 Gy and analyzed 2 weeks post-IR for radiation-induced senescence by immunohistochemistry and immunofluorescence microscopy. Transcriptome signatures were analyzed in (non-)irradiated NT and H2A.J-OE fibroblasts by RNA sequencing. Since H2A.J plays an important role in the epidermal homeostasis of human skin, the oncogenic potential of H2A.J was investigated in cutaneous squamous cell carcinoma (cSCC). The tissue microarrays of cSCC were analyzed for H2A.J protein expression pattern by automated image analysis. Results: In response to radiation-induced DNA damage, the overexpression of H2A.J impairs the formation of senescence-associated heterochromatin foci (SAHF), thereby inhibiting the SAHF-mediated silencing of proliferation-promoting genes. The dysregulated activation of cyclins and cyclin-dependent kinases disturbs cell cycle arrest in irradiated H2A.J-OE fibroblasts, thereby overcoming radiation-induced senescence. Comparative transcriptome analysis revealed significantly increased WNT16 signaling in H2A.J OE fibroblasts after IR exposure, promoting the fundamental mechanisms of tumor development and progression, including the activation of the epithelial-mesenchymal transition. The quantitative analysis of cSCCs revealed that undifferentiated tumors are associated with high nuclear H2A.J expression, related with greater oncogenic potential. Conclusion: H2A.J overexpression induces radioresistance and promotes oncogenic transformation through the activation of WNT16 signaling pathway functions. H2A.J-associated signatures may improve risk stratification by identifying patients with more aggressive cSCC who may require radiotherapy with increased doses.
Collapse
Affiliation(s)
| | | | | | | | - Claudia E. Rübe
- Department of Radiation Oncology, Saarland University Medical Center, 66421 Homburg, Germany (M.H.)
| |
Collapse
|
3
|
López-Cortés R, Muinelo-Romay L, Fernández-Briera A, Gil Martín E. High-Throughput Mass Spectrometry Analysis of N-Glycans and Protein Markers after FUT8 Knockdown in the Syngeneic SW480/SW620 Colorectal Cancer Cell Model. J Proteome Res 2024; 23:1379-1398. [PMID: 38507902 PMCID: PMC11002942 DOI: 10.1021/acs.jproteome.3c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Disruption of the glycosylation machinery is a common feature in many types of cancer, and colorectal cancer (CRC) is no exception. Core fucosylation is mediated by the enzyme fucosyltransferase 8 (FucT-8), which catalyzes the addition of α1,6-l-fucose to the innermost GlcNAc residue of N-glycans. We and others have documented the involvement of FucT-8 and core-fucosylated proteins in CRC progression, in which we addressed core fucosylation in the syngeneic CRC model formed by SW480 and SW620 tumor cell lines from the perspective of alterations in their N-glycosylation profile and protein expression as an effect of the knockdown of the FUT8 gene that encodes FucT-8. Using label-free, semiquantitative mass spectrometry (MS) analysis, we found noticeable differences in N-glycosylation patterns in FUT8-knockdown cells, affecting core fucosylation and sialylation, the Hex/HexNAc ratio, and antennarity. Furthermore, stable isotopic labeling of amino acids in cell culture (SILAC)-based proteomic screening detected the alteration of species involved in protein folding, endoplasmic reticulum (ER) and Golgi post-translational stabilization, epithelial polarity, and cellular response to damage and therapy. This data is available via ProteomeXchange with identifier PXD050012. Overall, the results obtained merit further investigation to validate their feasibility as biomarkers of progression and malignization in CRC, as well as their potential usefulness in clinical practice.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Doctoral
Program in Methods and Applications in Life Sciences, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Pontevedra (Galicia), Spain
| | - Laura Muinelo-Romay
- Liquid
Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela
(IDIS), CIBERONC, Travesía da Choupana, 15706 Santiago de Compostela, A Coruña
(Galicia), Spain
| | - Almudena Fernández-Briera
- Molecular
Biomarkers, Biomedical Research Centre (CINBIO), Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Pontevedra (Galicia), Spain
| | - Emilio Gil Martín
- Nutrition
and Food Science Group, Department of Biochemistry, Genetics and Immunology,
Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Pontevedra (Galicia), Spain
| |
Collapse
|
4
|
Lai PM, Chan KM. Roles of Histone H2A Variants in Cancer Development, Prognosis, and Treatment. Int J Mol Sci 2024; 25:3144. [PMID: 38542118 PMCID: PMC10969971 DOI: 10.3390/ijms25063144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 07/16/2024] Open
Abstract
Histones are nuclear proteins essential for packaging genomic DNA and epigenetic gene regulation. Paralogs that can substitute core histones (H2A, H2B, H3, and H4), named histone variants, are constitutively expressed in a replication-independent manner throughout the cell cycle. With specific chaperones, they can be incorporated to chromatin to modify nucleosome stability by modulating interactions with nucleosomal DNA. This allows the regulation of essential fundamental cellular processes for instance, DNA damage repair, chromosomal segregation, and transcriptional regulation. Among all the histone families, histone H2A family has the largest number of histone variants reported to date. Each H2A variant has multiple functions apart from their primary role and some, even be further specialized to perform additional tasks in distinct lineages, such as testis specific shortH2A (sH2A). In the past decades, the discoveries of genetic alterations and mutations in genes encoding H2A variants in cancer had revealed variants' potentiality in driving carcinogenesis. In addition, there is growing evidence that H2A variants may act as novel prognostic indicators or biomarkers for both early cancer detection and therapeutic treatments. Nevertheless, no studies have ever concluded all identified variants in a single report. Here, in this review, we summarize the respective functions for all the 19 mammalian H2A variants and their roles in cancer biology whilst potentiality being used in clinical setting.
Collapse
Affiliation(s)
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
5
|
Tewary G, Freyter B, Al-Razaq MA, Auerbach H, Laschke MW, Kübelbeck T, Kolb A, Mangelinck A, Mann C, Kramer D, Rübe CE. Immunomodulatory Effects of Histone Variant H2A.J in Ionizing Radiation Dermatitis. Int J Radiat Oncol Biol Phys 2024; 118:801-816. [PMID: 37758068 DOI: 10.1016/j.ijrobp.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE Histone variant H2A.J is associated with premature senescence after ionizing radiation (IR) and modulates senescence-associated secretory phenotype (SASP). Using constitutive H2A.J knock-out mice, the role of H2A.J was investigated in radiation dermatitis. METHODS AND MATERIALS H2A.J wild-type (WT) and knock-out (KO) mice were exposed to moderate or high IR doses (≤20 Gy, skinfold IR). Radiation-induced skin reactions were investigated up to 2 weeks post-IR at macroscopic and microscopic levels. H2A.J and other senescence markers, as well as DNA damage and proliferation markers, were studied by immunohistochemistry, immunofluorescence, and electron microscopy. After high-dose IR, protein-coding transcriptomes were analyzed by RNA sequencing, immune cell infiltration by flow cytometry, and gene expression by reverse transcription polymerase chain reaction in (non-) irradiated WT versus KO skin. RESULTS In WT skin, epidermal keratinocytes showed time- and dose-dependent H2A.J accumulation after IR exposure. Unexpectedly, stronger inflammatory reactions with increased epidermal thickness and progressive hair follicle loss were observed in irradiated KO versus WT skin. Clearly more radiation-induced senescence was observed in keratinocyte populations of KO skin after moderate and high doses, with hair follicle stem cells being particularly badly damaged, leading to follicle atrophy. After high-dose IR, transcriptomic analysis revealed enhanced senescence-associated signatures in irradiated KO skin, with intensified release of SASP factors. Flow cytometric analysis indicated increased immune cell infiltration in both WT and KO skin; however, specific chemokine-mediated signaling in irradiated KO skin led to more neutrophil recruitment, thereby aggravating radiation toxicities. Increased skin damage in irradiated KO skin led to hyperproliferation, abnormal differentiation, and cornification of keratinocytes, accompanied by increased upregulation of transcription-factor JunB. CONCLUSIONS Lack of radiation-induced H2A.J expression in keratinocytes is associated with increased senescence induction, modulation of SASP expression, and exacerbated inflammatory skin reactions. Hence, epigenetic H2A.J-mediated gene expression in response to IR regulates keratinocyte immune functions and plays an essential role in balancing the inflammatory response during radiation dermatitis.
Collapse
Affiliation(s)
- Gargi Tewary
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Benjamin Freyter
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Mutaz Abd Al-Razaq
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Hendrik Auerbach
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Tanja Kübelbeck
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Antonia Kolb
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Adèle Mangelinck
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Carl Mann
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Daniela Kramer
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Claudia E Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany.
| |
Collapse
|
6
|
Abd Al-razaq MA, Freyter BM, Isermann A, Tewary G, Mangelinck A, Mann C, Rübe CE. Role of Histone Variant H2A.J in Fine-Tuning Chromatin Organization for the Establishment of Ionizing Radiation-Induced Senescence. Cells 2023; 12:916. [PMID: 36980257 PMCID: PMC10047397 DOI: 10.3390/cells12060916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
PURPOSE Radiation-induced senescence is characterized by profound changes in chromatin organization with the formation of Senescence-Associated-Heterochromatin-Foci (SAHF) and DNA-Segments-with-Chromatin-Alterations-Reinforcing-Senescence (DNA-SCARS). Importantly, senescent cells also secrete complex combinations of pro-inflammatory factors, referred as Senescence-Associated-Secretory-Phenotype (SASP). Here, we analyzed the epigenetic mechanism of histone variant H2A.J in establishing radiation-induced senescence. EXPERIMENTAL DESIGN Primary and genetically-modified lung fibroblasts with down- or up-regulated H2A.J expression were exposed to ionizing radiation and were analyzed for the formation of SAHF and DNA-SCARS by immunofluorescence microscopy. Dynamic changes in chromatin organization and accessibility, transcription factor recruitment, and transcriptome signatures were mapped by ATAC-seq and RNA-seq analysis. The secretion of SASP factors and potential bystander effects were analyzed by ELISA and RT-PCR. Lung tissue of mice exposed to different doses were analyzed by the digital image analysis of H2A.J-immunohistochemistry. RESULTS Differential incorporation of H2A.J has profound effects on higher-order chromatin organization and on establishing the epigenetic state of senescence. Integrative analyses of ATAC-seq and RNA-seq datasets indicate that H2A.J-associated changes in chromatin accessibility of regulatory regions decisively modulates transcription factor recruitment and inflammatory gene expression, resulting in an altered SASP secretome. In lung parenchyma, pneumocytes show dose-dependent H2A.J expression in response to radiation-induced DNA damage, therefore contributing to pro-inflammatory tissue reactions. CONCLUSIONS The fine-tuned incorporation of H2A.J defines the epigenetic landscape for driving the senescence programme in response to radiation-induced DNA damage. Deregulated H2A.J deposition affects chromatin remodeling, transcription factor recruitment, and the pro-inflammatory secretome. Our findings provide new mechanistic insights into DNA-damage triggered epigenetic mechanisms governing the biological processes of radiation-induced injury.
Collapse
Affiliation(s)
- Mutaz A. Abd Al-razaq
- Department of Radiation Oncology, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Benjamin M. Freyter
- Department of Radiation Oncology, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Anna Isermann
- Department of Radiation Oncology, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Gargi Tewary
- Department of Radiation Oncology, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Adèle Mangelinck
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Carl Mann
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Claudia E. Rübe
- Department of Radiation Oncology, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| |
Collapse
|
7
|
Oberdoerffer P, Miller KM. Histone H2A variants: Diversifying chromatin to ensure genome integrity. Semin Cell Dev Biol 2023; 135:59-72. [PMID: 35331626 PMCID: PMC9489817 DOI: 10.1016/j.semcdb.2022.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Histone variants represent chromatin components that diversify the structure and function of the genome. The variants of H2A, primarily H2A.X, H2A.Z and macroH2A, are well-established participants in DNA damage response (DDR) pathways, which function to protect the integrity of the genome. Through their deposition, post-translational modifications and unique protein interaction networks, these variants guard DNA from endogenous threats including replication stress and genome fragility as well as from DNA lesions inflicted by exogenous sources. A growing body of work is now providing a clearer picture on the involvement and mechanistic basis of H2A variant contribution to genome integrity. Beyond their well-documented role in gene regulation, we review here how histone H2A variants promote genome stability and how alterations in these pathways contribute to human diseases including cancer.
Collapse
Affiliation(s)
- Philipp Oberdoerffer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|