1
|
Hunnicutt KE, Callahan C, Keeble S, Moore EC, Good JM, Larson EL. Different complex regulatory phenotypes underlie hybrid male sterility in divergent rodent crosses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564782. [PMID: 37961317 PMCID: PMC10634954 DOI: 10.1101/2023.10.30.564782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Hybrid incompatibilities are a critical component of species barriers and may arise due to negative interactions between divergent regulatory elements in parental species. We used a comparative approach to identify common themes in the regulatory phenotypes associated with hybrid male sterility in two divergent rodent crosses, dwarf hamsters and house mice. We investigated three potential characteristic gene expression phenotypes in hybrids including the propensity of transgressive differentially expressed genes in hybrids towards over or underexpression relative to parental species, the influence of developmental stage on the extent of misexpression, and the role of the sex chromosomes on misexpression phenotypes. In contrast to near pervasive overexpression in hybrid house mice, we found that misexpression in hybrid dwarf hamsters was dependent on developmental stage. In both house mouse and dwarf hamster hybrids, however, transgressive misexpression increased with the progression of spermatogenesis, although to varying extents and with potentially different consequences. In both systems, we detected sex-chromosome specific overexpression in stages of spermatogenesis where inactivated X chromosome expression was expected, but the hybrid overexpression phenotypes were fundamentally different. Importantly, misexpression phenotypes support the presence of multiple developmental blocks to spermatogenesis in dwarf hamster hybrids, including a potential role of meiotic stalling or breakdown early in spermatogenesis. Collectively, we demonstrate that while there are some similarities in hybrid expression phenotypes of house mice and dwarf hamsters, there are also clear differences that point towards unique mechanisms underlying hybrid male sterility in each system. Our results highlight the potential of comparative approaches in helping to understand the causes and consequences of disrupted gene expression in speciation.
Collapse
Affiliation(s)
| | - Colin Callahan
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812
| | - Emily C. Moore
- University of Denver, Department of Biological Sciences, Denver, CO, 80208
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812
| | - Jeffrey M. Good
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812
| | - Erica L. Larson
- University of Denver, Department of Biological Sciences, Denver, CO, 80208
| |
Collapse
|
2
|
Kaur R, Meier CJ, McGraw EA, Hillyer JF, Bordenstein SR. The mechanism of cytoplasmic incompatibility is conserved in Wolbachia-infected Aedes aegypti mosquitoes deployed for arbovirus control. PLoS Biol 2024; 22:e3002573. [PMID: 38547237 PMCID: PMC11014437 DOI: 10.1371/journal.pbio.3002573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/12/2024] [Accepted: 03/01/2024] [Indexed: 04/13/2024] Open
Abstract
The rising interest and success in deploying inherited microorganisms and cytoplasmic incompatibility (CI) for vector control strategies necessitate an explanation of the CI mechanism. Wolbachia-induced CI manifests in the form of embryonic lethality when sperm from Wolbachia-bearing testes fertilize eggs from uninfected females. Embryos from infected females however survive to sustain the maternally inherited symbiont. Previously in Drosophila melanogaster flies, we demonstrated that CI modifies chromatin integrity in developing sperm to bestow the embryonic lethality. Here, we validate these findings using wMel-transinfected Aedes aegypti mosquitoes released to control vector-borne diseases. Once again, the prophage WO CI proteins, CifA and CifB, target male gametic nuclei to modify chromatin integrity via an aberrant histone-to-protamine transition. Cifs are not detected in the embryo, and thus elicit CI via the nucleoprotein modifications established pre-fertilization. The rescue protein CifA in oogenesis localizes to stem cell, nurse cell, and oocyte nuclei, as well as embryonic DNA during embryogenesis. Discovery of the nuclear targeting Cifs and altered histone-to-protamine transition in both Aedes aegypti mosquitoes and D. melanogaster flies affirm the Host Modification Model of CI is conserved across these host species. The study also newly uncovers the cell biology of Cif proteins in the ovaries, CifA localization in the embryos, and an impaired histone-to-protamine transition during spermiogenesis of any mosquito species. Overall, these sperm modification findings may enable future optimization of CI efficacy in vectors or pests that are refractory to Wolbachia transinfections.
Collapse
Affiliation(s)
- Rupinder Kaur
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Cole J. Meier
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Elizabeth A. McGraw
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Pennsylvania State University, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
| | - Julian F. Hillyer
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Pennsylvania State University, Departments of Biology and Entomology, University Park, Pennsylvania, United States of America
- Pennsylvania State University, One Health Microbiome Center, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
| |
Collapse
|
3
|
Anqi Y, Saina Y, Chujie C, Yanfei Y, Xiangwei T, Jiajia M, Jiaojiao X, Maoliang R, Bin C. Regulation of DNA methylation during the testicular development of Shaziling pigs. Genomics 2022; 114:110450. [PMID: 35995261 DOI: 10.1016/j.ygeno.2022.110450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
DNA methylation is one of the key epigenetic regulatory mechanisms in development and spermatogenesis. However, the dynamic regulatory mechanisms of genome-wide DNA methylation during testicular development remain largely unknown. Herein, we generated a single-base resolution DNA methylome and transcriptome atlas of precocious porcine testicular tissues across three developmental stages (1, 75, and 150 days old). The results showed that the dynamic methylation patterns were directly related to the expression of the DNMT3A gene. Conjoint analysis revealed a negative regulatory pattern between promoter methylation and the positive regulation of 3'-untranslated region (3'UTR) methylation. Mechanistically, the decrease in promoter methylation affected the upregulation of meiosis-related genes, such as HORMAD1, SPO11, and SYCE1. Demethylation in the 3'UTR induced the downregulation of the INHBA gene and knockdown of INHBA inhibited cell proliferation by reducing the synthesis of activin A. These findings contribute to exploring the regulatory mechanisms of DNA methylation in testicular development.
Collapse
Affiliation(s)
- Yang Anqi
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Yan Saina
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Chen Chujie
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Yin Yanfei
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Tang Xiangwei
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ma Jiajia
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Xiang Jiaojiao
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ran Maoliang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China.
| | - Chen Bin
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China.
| |
Collapse
|
4
|
de Almeida BRR, Noronha RCR, Cardoso AL, Martins C, Martins JG, Procópio REDL, Nagamachi CY, Pieczarka JC. Kinetic Activity of Chromosomes and Expression of Recombination Genes in Achiasmatic Meiosis of Tityus (Archaeotityus) Scorpions. Int J Mol Sci 2022; 23:ijms23169179. [PMID: 36012447 PMCID: PMC9408970 DOI: 10.3390/ijms23169179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Several species of Tityus (Scorpiones, Buthidae) present multi-chromosomal meiotic associations and failures in the synaptic process, originated from reciprocal translocations. Holocentric chromosomes and achiasmatic meiosis in males are present in all members of this genus. In the present study, we investigated synapse dynamics, transcriptional silencing by γH2AX, and meiotic microtubule association in bivalents and a quadrivalent of the scorpion Tityus maranhensis. Additionally, we performed RT-PCR to verify the expression of mismatch repair enzymes involved in crossing-over formation in Tityus silvestris gonads. The quadrivalent association in T. maranhensis showed delay in the synaptic process and long asynaptic regions during pachytene. In this species, γH2AX was recorded only at the chromosome ends during early stages of prophase I; in metaphase I, bivalents and quadrivalents of T. maranhensis exhibited binding to microtubules along their entire length, while in metaphase II/anaphase II transition, spindle fibers interacted only with telomeric regions. Regarding T. silvestris, genes involved in the recombination process were transcribed in ovaries, testes and embryos, without significant difference between these tissues. The expression of these genes during T. silvestris achiasmatic meiosis is discussed in the present study. The absence of meiotic inactivation by γH2AX and holo/telokinetic behavior of the chromosomes are important factors for the maintenance of the quadrivalent in T. maranhensis and the normal continuation of the meiotic cycle in this species.
Collapse
Affiliation(s)
- Bruno Rafael Ribeiro de Almeida
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Perimetral da Ciência, km 01, Guamá, Belem 66075-750, PA, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Pará, Campus Itaituba, R. Universitário, s/n, Maria Magdalena, Itaituba 68183-300, PA, Brazil
| | - Renata Coelho Rodrigues Noronha
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Perimetral da Ciência, km 01, Guamá, Belem 66075-750, PA, Brazil
| | - Adauto Lima Cardoso
- Laboratório Genômica Integrativa, Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Júnior, s/n, Rubião Júnior, Botucatu 18618970, SP, Brazil
| | - Cesar Martins
- Laboratório Genômica Integrativa, Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Júnior, s/n, Rubião Júnior, Botucatu 18618970, SP, Brazil
| | - Jonas Gama Martins
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936-Petrópolis, Manaus 69067-375, AM, Brazil
| | - Rudi Emerson de Lima Procópio
- Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas (UEA), Avenida Carvalho Leal, 1777-Cachoeirinha, Manaus 69065-170, AM, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Perimetral da Ciência, km 01, Guamá, Belem 66075-750, PA, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Perimetral da Ciência, km 01, Guamá, Belem 66075-750, PA, Brazil
- Correspondence:
| |
Collapse
|