1
|
Zhang Q, Zhou X, Feng T, Tong H, Wang J, Dai J. The immune function of thioester-containing proteins in typical invertebrate disease vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 176:104218. [PMID: 39579796 DOI: 10.1016/j.ibmb.2024.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Disease vectors, such as arthropods, primarily rely on innate immunity to counteract pathogen invasions, typically through the recognition and binding of pathogen-associated molecular patterns (PAMPs) by the host's pattern recognition receptors (PRRs). As a conserved immune effector gene family from insects to mammals, the complement system may play an essential role in combating pathogenic microorganisms. In arthropods, the complement proteins are often referred to as thioester-containing proteins (TEPs) because thioester motifs are one of the essential functional domains of the first proteins characterized within the C3 and A2M family. TEPs mainly function as specialized PRRs in sensing and binding to pathogens or their components. This paper presents a comprehensive review of the common domain and functions of TEPs in major disease vectors, in particular the specific decision-making ones expressed by Arthropoda (medical arthropods) and Mollusca (Biomphalaria glabrata) after pathogen infections. The relationship between the structure and antibacterial/antiviral activities of TEPs would further our understandings on the mechanisms governing the initiation of innate immune responses in typical disease vectors.
Collapse
Affiliation(s)
- Qianqian Zhang
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xia Zhou
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Tingting Feng
- Central Laboratory, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Tong
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jun Wang
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Song X, Huang T, Yan X, Zuo M, Pan Y, He H, Li Y, Zou Y, Du C, Zheng F, Yang T. The pederin-producing bacteria density dynamics in Paederus fuscipes at different developmental stages. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:59-72. [PMID: 37771128 DOI: 10.1111/mve.12697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
Pederin, a defensive toxin in Paederus fuscipes, is produced by an uncultured Gram-negative symbiont, which establishes a stable symbiotic relationship with a female host before completion of metamorphosis. However, the transmission process of pederin-producing bacteria (PPB) in P. fuscipes at different life stages remains unknown. Herein, the PPB population dynamics and transcriptome atlas for P. fuscipes development (egg, first-instar larva, second-instar larva, pupa, and newly emerged female and male) were characterised. We found that a microbial layer containing PPB covered the eggshell, which could be sterilised by smearing the eggshell with streptomycin. Maternal secretions over the eggshell are likely the main PPB acquisition route for P. fuscipes offspring. The PPB density in eggs was significantly higher than that in other life stages (p < 0.05), which demonstrated that the beetle mothers gave more PPB than the larvae acquired. Physiological changes (hatching and eclosion) led to a decreased PPB density in P. fuscipes. Pattern recognition receptors related to Gram-negative bacteria recognition were identified from P. fuscipes transcriptomes across various life stages, which might be used to screen genes involved in PPB regulation. These results will help advance future efforts to determine the molecular mechanisms of PPB colonisation of P. fuscipes.
Collapse
Affiliation(s)
- Xuhao Song
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| | - Ting Huang
- National Base for International Science and Technology Cooperation, School of Pharmacy, Chengdu University, Chengdu, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Xianghui Yan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Mengyuan Zuo
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Ying Pan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Hengguo He
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Yujie Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Yuan Zou
- School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chao Du
- Faculty of Biological Science and Technology, Baotou Teachers' College, Baotou, Inner Mongolia, China
| | - Fake Zheng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Tingbang Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
3
|
Xie X, Wang D, Li B, Liang G, Chen X, Xing D, Zhao T, Zhou X, Li C. Aedes aegypti Beta-1,3-Glucan-Binding Protein Inhibits Dengue and ZIKA Virus Replication. Biomedicines 2024; 12:88. [PMID: 38255195 PMCID: PMC10812959 DOI: 10.3390/biomedicines12010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
GNBPB6, a beta-1,3-glucan-binding protein, was identified in the transcriptome of Aedes aegypti (A. aegypti) with dengue (DENV), Zika (ZIKV), and chikungunya viruses (CHIKV). In this study, we not only clarified that DENV2 and ZIKV regulate the changes in GNBPB6 expression but also identified the relationship of this gene with viral infections. The changes in GNBPB6 expression were quantified and showed a decrease in A. aegypti cells (Aag2 cells) at 2 dpi and 3 dpi and an increase at 4 dpi and 5 dpi (p < 0.05). A significant increase was observed only at 5 dpi after DENV2 infection. Subsequently, a GNBPB6 knockout (KO) cell line was constructed using the CRISPR/Cas9 system, and the DENV2 and ZIKV RNA copies, along with cell densities, were quantified and compared between the KO and wild type (WT) cells at different dpi. The result showed that DENV2 and ZIKV RNA copies were significantly increased in the KO cell line with no significant change in cell growth. Finally, DENV2 copies decreased after GNBPB6 was complemented in the KO. In conclusion, GNBPB6 knockout and complementation in Aag2 cells revealed that GNBPB6 can inhibit the replication of both DENV2 and ZIKV. These results contribute to subsequent research on mosquito-virus interactions.
Collapse
Affiliation(s)
- Xiaoxue Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Di Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Bo Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Guorui Liang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Xiaoli Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Xinyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.X.); (D.W.); (B.L.); (G.L.); (X.C.); (D.X.); (T.Z.)
| |
Collapse
|