1
|
Singh S, Das A, Singh R, Chikh-Rouhou H, Priyadarsini S, Nandi A. Phyto-nutraceutical promise of Brassica vegetables in post-genomic era: a comprehensive review. PLANTA 2024; 261:10. [PMID: 39656314 DOI: 10.1007/s00425-024-04587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024]
Abstract
MAIN CONCLUSION Brassica vegetables are one of the possible solutions to tackle the emerging human diseases and malnutrition due to their rich content of phyto-nutraceutaical compounds. The genomics enabled tools have facilitated the elucidation of molecular regulation, mapping of genes/QTLs governing nutraceutical compounds, and development of nutrient-rich Brassica vegetables. The enriched food products or foods as whole termed as functional foods are intended to provide health benefits. The 2500 year old Hippocratic phrase 'let thy food be thy medicine and thy medicine be thy food' remained in anonymity due to lack of sufficient evidence. However, today, we are facing reappraisal of healthy nutritious functional foods in battling diseases. In this context, the Brassica vegetables represent the most extensively investigated class of functional foods. An optimal consumption of Brassica vegetables is associated with lowering the risks of several types of cancer, chronic diseases, cardiovascular disease, and help in autism. In the post-genomic era, the integration of genetic and neoteric omics tools like transcriptomics, metabolomics, and proteomics have illuminated the downstream genetic mechanisms governing functional food value of Brassica vegetables. In this review, we have summarized in brief the phyto-nutraceutical profile and their functionality in Brassica vegetables. This review also highlights the progress made in identification of candidate genes/QTLs for accumulation of bioactive compounds in Brassica vegetables. We summarize the molecular regulation of major phytochemicals and breeding triumphs in delivering multifunctional Brassica vegetables.
Collapse
Affiliation(s)
- Saurabh Singh
- Department of Vegetable Science, College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University (RLBCAU), Jhansi, U.P, 284003, India.
| | - Anjan Das
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Rajender Singh
- Division of Crop Improvement, ICAR-Central Potato Research Institute, Shimla, H.P., 171001, India
| | - Hela Chikh-Rouhou
- Regional Research Centre On Horticulture and Organic Agriculture (CRRHAB), LR21AGR03-Production and Protection for a Sustainable Horticulture, University of Sousse, Sousse, Tunisia
| | - Srija Priyadarsini
- Department of Vegetable Science, Odisha University of Agriculture and Technology (OUAT), Bhubaneswar, 751003, India
| | - Alok Nandi
- Institute of Agricultural Sciences, SOA University, Bhubaneswar, 751029, India
| |
Collapse
|
2
|
Tarasov SS, Krutova EK. Dynamics of the Activity of Antioxidant Enzymes and the Expression of the Genes Encoding Them in Wheat after Exposure to Ultrasound. BIOL BULL+ 2024; 51:346-357. [DOI: 10.1134/s1062359023605323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 01/04/2025]
|
3
|
Mei Y, Lei J, Liu W, Yue Z, Hu Q, Tao P, Li B, Zhao Y. Transcriptomic and Proteomic Analyses Unveil the Role of Nitrogen Metabolism in the Formation of Chinese Cabbage Petiole Spot. Int J Mol Sci 2024; 25:1366. [PMID: 38338646 PMCID: PMC10855159 DOI: 10.3390/ijms25031366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
Chinese cabbage is the most widely consumed vegetable crop due to its high nutritional value and rock-bottom price. Notably, the presence of the physiological disease petiole spot significantly impacts the appearance quality and marketability of Chinese cabbage. It is well known that excessive nitrogen fertilizer is a crucial factor in the occurrence of petiole spots; however, the mechanism by which excessive nitrogen triggers the formation of petiole spots is not yet clear. In this study, we found that petiole spots initially gather in the intercellular or extracellular regions, then gradually extend into intracellular regions, and finally affect adjacent cells, accompanied by cell death. Transcriptomic and proteomic as well as physiology analyses revealed that the genes/proteins involved in nitrogen metabolism exhibited different expression patterns in resistant and susceptible Chinese cabbage lines. The resistant Chinese cabbage line has high assimilation ability of NH4+, whereas the susceptible one accumulates excessive NH4+, thus inducing a burst of reactive oxygen species (ROS). These results introduce a novel perspective to the investigation of petiole spot induced by the nitrogen metabolism pathway, offering a theoretical foundation for the development of resistant strains in the control of petiole spot.
Collapse
Affiliation(s)
- Ying Mei
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Juanli Lei
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Wenqi Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhichen Yue
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Qizan Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Peng Tao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Biyuan Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Yanting Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| |
Collapse
|
4
|
Yu JS, You MK, Lee YJ, Ha SH. Stepwise protein targeting into plastoglobules are facilitated by three hydrophobic regions of rice phytoene synthase 2. FRONTIERS IN PLANT SCIENCE 2023; 14:1181311. [PMID: 37324722 PMCID: PMC10264786 DOI: 10.3389/fpls.2023.1181311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Plastoglobules (PGs) are plastidial lipid droplets enclosed by a polar monolayer born from the thylakoid membrane when plants require active lipid metabolism, including carotenogenesis, under the environmental stress and during plastid transition. Despite the fact that many proteins are reported to target PGs, their translocation mechanism has remained largely unexplored. To elucidate this process, we studied the influence of three hydrophobic regions (HR)-HR1 (1-45th aa), HR2 (46-80th aa), and HR3 (229-247th aa)-of rice phytoene synthase 2 (OsPSY2, 398 aa), which has previously shown to target PGs. As results, HR1 includes the crucial sequence (31-45th aa) for chloroplast import and the stromal cleavage occurs at a specific alanine site (64th aa) within HR2, verifying that a N-terminal 64-aa-region works as the transit peptide (Tp). HR2 has a weak PG-targeting signal by showing synchronous and asynchronous localization patterns in both PGs and stroma of chloroplasts. HR3 exhibited a strong PG-targeting role with the required positional specificity to prevent potential issues such as non-accumulation, aggregation, and folding errors in proteins. Herein, we characterized a Tp and two transmembrane domains in three HRs of OsPSY2 and propose a spontaneous pathway for its PG-translocation with a shape embedded in the PG-monolayer. Given this subplastidial localization, we suggest six sophisticated tactics for plant biotechnology applications, including metabolic engineering and molecular farming.
Collapse
|
5
|
Shi L, Chang L, Yu Y, Zhang D, Zhao X, Wang W, Li P, Xin X, Zhang F, Yu S, Su T, Dong Y, Shi F. Recent Advancements and Biotechnological Implications of Carotenoid Metabolism of Brassica. PLANTS (BASEL, SWITZERLAND) 2023; 12:1117. [PMID: 36903976 PMCID: PMC10005552 DOI: 10.3390/plants12051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Carotenoids were synthesized in the plant cells involved in photosynthesis and photo-protection. In humans, carotenoids are essential as dietary antioxidants and vitamin A precursors. Brassica crops are the major sources of nutritionally important dietary carotenoids. Recent studies have unraveled the major genetic components in the carotenoid metabolic pathway in Brassica, including the identification of key factors that directly participate or regulate carotenoid biosynthesis. However, recent genetic advances and the complexity of the mechanism and regulation of Brassica carotenoid accumulation have not been reviewed. Herein, we reviewed the recent progress regarding Brassica carotenoids from the perspective of forward genetics, discussed biotechnological implications and provided new perspectives on how to transfer the knowledge of carotenoid research in Brassica to the crop breeding process.
Collapse
Affiliation(s)
- Lichun Shi
- School of Life Sciences, Liaocheng University, Liaocheng 252059, China
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Lin Chang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yang Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fumei Shi
- School of Life Sciences, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
6
|
Wang L, Zhang S, Li J, Zhang Y, Zhou D, Li C, He L, Li H, Wang F, Gao J. Identification of key genes controlling soluble sugar and glucosinolate biosynthesis in Chinese cabbage by integrating metabolome and genome-wide transcriptome analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1043489. [PMID: 36507456 PMCID: PMC9732556 DOI: 10.3389/fpls.2022.1043489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Soluble sugar and glucosinolate are essential components that determine the flavor of Chinese cabbage and consumer preferences. However, the underlying regulatory networks that modulate the biosynthesis of soluble sugar and glucosinolate in Chinese cabbage remain largely unknown. METHODS The glucosinolate and carotene content in yellow inner-leaf Chinese cabbage were observed, followed by the combination of metabolome and transcriptome analysis to explore the metabolic basis of glucosinolate and soluble sugar. RESULTS This study observed high glucosinolate and carotene content in yellow inner-leaf Chinese cabbage, which showed a lower soluble sugar content. The differences between the yellow and the white inner-leaf Chinese cabbage were compared using the untargeted metabonomic and transcriptomic analyses in six cultivars of Chinese cabbage to explore the metabolic basis of glucosinolate and soluble sugar. Aliphatic glucosinolate and two soluble sugars (fructose and glucose) were the key metabolites that caused the difference in Chinese cabbage's glucosinolate and soluble sugar. By integrating soluble sugar and glucosinolate-associated metabolism and transcriptome data, we indicated BraA05gAOP1 and BraA04gAOP4, BraA03gHT7 and BraA01gHT4 were the glucosinolates and soluble sugar biosynthesis structural genes. Moreover, BraA01gCHR11 and BraA07gSCL1 were two vital transcription factors that regulate soluble sugar and glucosinolate biosynthesis. DISCUSSION These findings provide novel insights into glucosinolate and soluble sugar biosynthesis and a possible explanation for the significant difference in nutrients between yellow and white inner-leaf Chinese cabbage. Moreover, it will facilitate genetic modification to improve the Chinese cabbage's nutritional and health values.
Collapse
Affiliation(s)
- Lixia Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shu Zhang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jingjuan Li
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yihui Zhang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dandan Zhou
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Cheng Li
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lilong He
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Huayin Li
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fengde Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianwei Gao
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
7
|
Valderrama E, Landis JB, Skinner D, Maas PJM, Maas-van de Kramer H, André T, Grunder N, Sass C, Pinilla-Vargas M, Guan CJ, Phillips HR, de Almeida AMR, Specht CD. The genetic mechanisms underlying the convergent evolution of pollination syndromes in the Neotropical radiation of Costus L. FRONTIERS IN PLANT SCIENCE 2022; 13:874322. [PMID: 36161003 PMCID: PMC9493542 DOI: 10.3389/fpls.2022.874322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
Selection together with variation in floral traits can act to mold floral form, often driven by a plant's predominant or most effective pollinators. To investigate the evolution of traits associated with pollination, we developed a phylogenetic framework for evaluating tempo and mode of pollination shifts across the genus Costus L., known for its evolutionary toggle between traits related to bee and bird pollination. Using a target enrichment approach, we obtained 957 loci for 171 accessions to expand the phylogenetic sampling of Neotropical Costus. In addition, we performed whole genome resequencing for a subset of 20 closely related species with contrasting pollination syndromes. For each of these 20 genomes, a high-quality assembled transcriptome was used as reference for consensus calling of candidate loci hypothesized to be associated with pollination-related traits of interest. To test for the role these candidate genes may play in evolutionary shifts in pollinators, signatures of selection were estimated as dN/dS across the identified candidate loci. We obtained a well-resolved phylogeny for Neotropical Costus despite conflict among gene trees that provide evidence of incomplete lineage sorting and/or reticulation. The overall topology and the network of genome-wide single nucleotide polymorphisms (SNPs) indicate that multiple shifts in pollination strategy have occurred across Costus, while also suggesting the presence of previously undetected signatures of hybridization between distantly related taxa. Traits related to pollination syndromes are strongly correlated and have been gained and lost in concert several times throughout the evolution of the genus. The presence of bract appendages is correlated with two traits associated with defenses against herbivory. Although labellum shape is strongly correlated with overall pollination syndrome, we found no significant impact of labellum shape on diversification rates. Evidence suggests an interplay of pollination success with other selective pressures shaping the evolution of the Costus inflorescence. Although most of the loci used for phylogenetic inference appear to be under purifying selection, many candidate genes associated with functional traits show evidence of being under positive selection. Together these results indicate an interplay of phylogenetic history with adaptive evolution leading to the diversification of pollination-associated traits in Neotropical Costus.
Collapse
Affiliation(s)
- Eugenio Valderrama
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, United States
| | - Dave Skinner
- Le Jardin Ombragé, Tallahassee, FL, United States
| | - Paul J. M. Maas
- Section Botany, Naturalis Biodiversity Center, Leiden, Netherlands
| | | | - Thiago André
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Nikolaus Grunder
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, United States
| | - Chodon Sass
- University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, United States
| | - Maria Pinilla-Vargas
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Clarice J. Guan
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Heather R. Phillips
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | | | - Chelsea D. Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| |
Collapse
|