1
|
de Luca KL, Rullens PMJ, Karpinska MA, de Vries SS, Gacek-Matthews A, Pongor LS, Legube G, Jachowicz JW, Oudelaar AM, Kind J. Genome-wide profiling of DNA repair proteins in single cells. Nat Commun 2024; 15:9918. [PMID: 39572529 PMCID: PMC11582664 DOI: 10.1038/s41467-024-54159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
Accurate repair of DNA damage is critical for maintenance of genomic integrity and cellular viability. Because damage occurs non-uniformly across the genome, single-cell resolution is required for proper interrogation, but sensitive detection has remained challenging. Here, we present a comprehensive analysis of repair protein localization in single human cells using DamID and ChIC sequencing techniques. This study reports genome-wide binding profiles in response to DNA double-strand breaks induced by AsiSI, and explores variability in genomic damage locations and associated repair features in the context of spatial genome organization. By unbiasedly detecting repair factor localization, we find that repair proteins often occupy entire topologically associating domains, mimicking variability in chromatin loop anchoring. Moreover, we demonstrate the formation of multi-way chromatin hubs in response to DNA damage. Notably, larger hubs show increased coordination of repair protein binding, suggesting a preference for cooperative repair mechanisms. Together, our work offers insights into the heterogeneous processes underlying genome stability in single cells.
Collapse
Affiliation(s)
- Kim L de Luca
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) & University Medical Center Utrecht, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Pim M J Rullens
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) & University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Magdalena A Karpinska
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra S de Vries
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) & University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Agnieszka Gacek-Matthews
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Lőrinc S Pongor
- Cancer Genomics and Epigenetics Core Group, Hungarian Center of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Gaëlle Legube
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Joanna W Jachowicz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - A Marieke Oudelaar
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jop Kind
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) & University Medical Center Utrecht, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Kolbin D, Walker BL, Hult C, Stanton JD, Adalsteinsson D, Forest MG, Bloom K. Polymer Modeling Reveals Interplay between Physical Properties of Chromosomal DNA and the Size and Distribution of Condensin-Based Chromatin Loops. Genes (Basel) 2023; 14:2193. [PMID: 38137015 PMCID: PMC10742461 DOI: 10.3390/genes14122193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Transient DNA loops occur throughout the genome due to thermal fluctuations of DNA and the function of SMC complex proteins such as condensin and cohesin. Transient crosslinking within and between chromosomes and loop extrusion by SMCs have profound effects on high-order chromatin organization and exhibit specificity in cell type, cell cycle stage, and cellular environment. SMC complexes anchor one end to DNA with the other extending some distance and retracting to form a loop. How cells regulate loop sizes and how loops distribute along chromatin are emerging questions. To understand loop size regulation, we employed bead-spring polymer chain models of chromatin and the activity of an SMC complex on chromatin. Our study shows that (1) the stiffness of the chromatin polymer chain, (2) the tensile stiffness of chromatin crosslinking complexes such as condensin, and (3) the strength of the internal or external tethering of chromatin chains cooperatively dictate the loop size distribution and compaction volume of induced chromatin domains. When strong DNA tethers are invoked, loop size distributions are tuned by condensin stiffness. When DNA tethers are released, loop size distributions are tuned by chromatin stiffness. In this three-way interaction, the presence and strength of tethering unexpectedly dictates chromatin conformation within a topological domain.
Collapse
Affiliation(s)
- Daniel Kolbin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.K.); (J.D.S.)
| | - Benjamin L. Walker
- Department of Mathematics, University of California-Irvine, Irvine, CA 92697, USA;
| | - Caitlin Hult
- Department of Mathematics, Gettysburg College, Gettysburg, PA 17325, USA
| | - John Donoghue Stanton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.K.); (J.D.S.)
| | - David Adalsteinsson
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.A.); (M.G.F.)
| | - M. Gregory Forest
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.A.); (M.G.F.)
- Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.K.); (J.D.S.)
| |
Collapse
|
3
|
García Fernández F, Huet S, Miné-Hattab J. Multi-Scale Imaging of the Dynamic Organization of Chromatin. Int J Mol Sci 2023; 24:15975. [PMID: 37958958 PMCID: PMC10649806 DOI: 10.3390/ijms242115975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chromatin is now regarded as a heterogeneous and dynamic structure occupying a non-random position within the cell nucleus, where it plays a key role in regulating various functions of the genome. This current view of chromatin has emerged thanks to high spatiotemporal resolution imaging, among other new technologies developed in the last decade. In addition to challenging early assumptions of chromatin being regular and static, high spatiotemporal resolution imaging made it possible to visualize and characterize different chromatin structures such as clutches, domains and compartments. More specifically, super-resolution microscopy facilitates the study of different cellular processes at a nucleosome scale, providing a multi-scale view of chromatin behavior within the nucleus in different environments. In this review, we describe recent imaging techniques to study the dynamic organization of chromatin at high spatiotemporal resolution. We also discuss recent findings, elucidated by these techniques, on the chromatin landscape during different cellular processes, with an emphasis on the DNA damage response.
Collapse
Affiliation(s)
- Fabiola García Fernández
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, 75005 Paris, France;
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, 35000 Rennes, France;
- Institut Universitaire de France, 75231 Paris, France
| | - Judith Miné-Hattab
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, 75005 Paris, France;
| |
Collapse
|
4
|
Scherthan H, Geiger B, Ridinger D, Müller J, Riccobono D, Bestvater F, Port M, Hausmann M. Nano-Architecture of Persistent Focal DNA Damage Regions in the Minipig Epidermis Weeks after Acute γ-Irradiation. Biomolecules 2023; 13:1518. [PMID: 37892200 PMCID: PMC10605239 DOI: 10.3390/biom13101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Exposure to high acute doses of ionizing radiation (IR) can induce cutaneous radiation syndrome. Weeks after such radiation insults, keratinocyte nuclei of the epidermis exhibit persisting genomic lesions that present as focal accumulations of DNA double-strand break (DSB) damage marker proteins. Knowledge about the nanostructure of these genomic lesions is scarce. Here, we compared the chromatin nano-architecture with respect to DNA damage response (DDR) factors in persistent genomic DNA damage regions and healthy chromatin in epidermis sections of two minipigs 28 days after lumbar irradiation with ~50 Gy γ-rays, using single-molecule localization microscopy (SMLM) combined with geometric and topological mathematical analyses. SMLM analysis of fluorochrome-stained paraffin sections revealed, within keratinocyte nuclei with perisitent DNA damage, the nano-arrangements of pATM, 53BP1 and Mre11 DDR proteins in γ-H2AX-positive focal chromatin areas (termed macro-foci). It was found that persistent macro-foci contained on average ~70% of 53BP1, ~23% of MRE11 and ~25% of pATM single molecule signals of a nucleus. MRE11 and pATM fluorescent tags were organized in focal nanoclusters peaking at about 40 nm diameter, while 53BP1 tags formed nanoclusters that made up super-foci of about 300 nm in size. Relative to undamaged nuclear chromatin, the enrichment of DDR protein signal tags in γ-H2AX macro-foci was on average 8.7-fold (±3) for 53BP1, 3.4-fold (±1.3) for MRE11 and 3.6-fold (±1.8) for pATM. The persistent macro-foci of minipig epidermis displayed a ~2-fold enrichment of DDR proteins, relative to DSB foci of lymphoblastoid control cells 30 min after 0.5 Gy X-ray exposure. A lasting accumulation of damage signaling and sensing molecules such as pATM and 53BP1, as well as the DSB end-processing protein MRE11 in the persistent macro-foci suggests the presence of diverse DNA damages which pose an insurmountable problem for DSB repair.
Collapse
Affiliation(s)
- Harry Scherthan
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 München, Germany (M.P.)
| | - Beatrice Geiger
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany (D.R.)
| | - David Ridinger
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany (D.R.)
| | - Jessica Müller
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 München, Germany (M.P.)
| | - Diane Riccobono
- Département des Effets Biologiques des Rayonnements, French Armed Forces Biomedical Research Institute, UMR 1296, BP 73, 91223 Brétigny-sur-Orge, France;
| | - Felix Bestvater
- Core Facility Light Microscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany;
| | - Matthias Port
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 München, Germany (M.P.)
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany (D.R.)
| |
Collapse
|
5
|
Stefanova ME, Ing-Simmons E, Stefanov S, Flyamer I, Dorado Garcia H, Schöpflin R, Henssen AG, Vaquerizas JM, Mundlos S. Doxorubicin Changes the Spatial Organization of the Genome around Active Promoters. Cells 2023; 12:2001. [PMID: 37566080 PMCID: PMC10417312 DOI: 10.3390/cells12152001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
In this study, we delve into the impact of genotoxic anticancer drug treatment on the chromatin structure of human cells, with a particular focus on the effects of doxorubicin. Using Hi-C, ChIP-seq, and RNA-seq, we explore the changes in chromatin architecture brought about by doxorubicin and ICRF193. Our results indicate that physiologically relevant doses of doxorubicin lead to a local reduction in Hi-C interactions in certain genomic regions that contain active promoters, with changes in chromatin architecture occurring independently of Top2 inhibition, cell cycle arrest, and differential gene expression. Inside the regions with decreased interactions, we detected redistribution of RAD21 around the peaks of H3K27 acetylation. Our study also revealed a common structural pattern in the regions with altered architecture, characterized by two large domains separated from each other. Additionally, doxorubicin was found to increase CTCF binding in H3K27 acetylated regions. Furthermore, we discovered that Top2-dependent chemotherapy causes changes in the distance decay of Hi-C contacts, which are driven by direct and indirect inhibitors. Our proposed model suggests that doxorubicin-induced DSBs cause cohesin redistribution, which leads to increased insulation on actively transcribed TAD boundaries. Our findings underscore the significant impact of genotoxic anticancer treatment on the chromatin structure of the human genome.
Collapse
Affiliation(s)
- Maria E. Stefanova
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany (S.M.)
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Elizabeth Ing-Simmons
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; (E.I.-S.); (J.M.V.)
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Stefan Stefanov
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany;
- Department of Biology, Chemistry, and Pharmacology, Institute of Biochemistry, Freie Universität Berlin, 14163 Berlin, Germany
| | - Ilya Flyamer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland;
| | - Heathcliff Dorado Garcia
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, 13125 Berlin, Germany; (H.D.G.); (A.G.H.)
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Robert Schöpflin
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany (S.M.)
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Anton G. Henssen
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, 13125 Berlin, Germany; (H.D.G.); (A.G.H.)
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Juan M. Vaquerizas
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; (E.I.-S.); (J.M.V.)
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Stefan Mundlos
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany (S.M.)
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
6
|
Kabirova E, Nurislamov A, Shadskiy A, Smirnov A, Popov A, Salnikov P, Battulin N, Fishman V. Function and Evolution of the Loop Extrusion Machinery in Animals. Int J Mol Sci 2023; 24:5017. [PMID: 36902449 PMCID: PMC10003631 DOI: 10.3390/ijms24055017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes are essential proteins found in genomes of all cellular organisms. Essential functions of these proteins, such as mitotic chromosome formation and sister chromatid cohesion, were discovered a long time ago. Recent advances in chromatin biology showed that SMC proteins are involved in many other genomic processes, acting as active motors extruding DNA, which leads to the formation of chromatin loops. Some loops formed by SMC proteins are highly cell type and developmental stage specific, such as SMC-mediated DNA loops required for VDJ recombination in B-cell progenitors, or dosage compensation in Caenorhabditis elegans and X-chromosome inactivation in mice. In this review, we focus on the extrusion-based mechanisms that are common for multiple cell types and species. We will first describe an anatomy of SMC complexes and their accessory proteins. Next, we provide biochemical details of the extrusion process. We follow this by the sections describing the role of SMC complexes in gene regulation, DNA repair, and chromatin topology.
Collapse
Affiliation(s)
- Evelyn Kabirova
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem Nurislamov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem Shadskiy
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander Smirnov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Andrey Popov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Pavel Salnikov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Veniamin Fishman
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Artificial Intelligence Research Institute (AIRI), 121108 Moscow, Russia
| |
Collapse
|
7
|
Hung KL, Mischel PS, Chang HY. Gene regulation on extrachromosomal DNA. Nat Struct Mol Biol 2022; 29:736-744. [PMID: 35948767 PMCID: PMC10246724 DOI: 10.1038/s41594-022-00806-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Oncogene amplification on extrachromosomal DNA (ecDNA) is prevalent in human cancer and is associated with poor outcomes. Clonal, megabase-sized circular ecDNAs in cancer are distinct from nonclonal, small sub-kilobase-sized DNAs that may arise during normal tissue homeostasis. ecDNAs enable profound changes in gene regulation beyond copy-number gains. An emerging principle of ecDNA regulation is the formation of ecDNA hubs: micrometer-sized nuclear structures of numerous copies of ecDNAs tethered by proteins in spatial proximity. ecDNA hubs enable cooperative and intermolecular sharing of DNA regulatory elements for potent and combinatorial gene activation. The 3D context of ecDNA shapes its gene expression potential, selection for clonal heterogeneity among ecDNAs, distribution through cell division, and reintegration into chromosomes. Technologies for studying gene regulation and structure of ecDNA are starting to answer long-held questions on the distinct rules that govern cancer genes beyond chromosomes.
Collapse
Affiliation(s)
- King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine and ChEM-H, Stanford University, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|