1
|
Yang YC, Chu PY, Chen CC, Yang WC, Hsu TH, Gong HY, Liao IC, Huang CW. Transcriptomic Insights and the Development of Microsatellite Markers to Assess Genetic Diversity in the Broodstock Management of Litopenaeus stylirostris. Animals (Basel) 2024; 14:1685. [PMID: 38891732 PMCID: PMC11171113 DOI: 10.3390/ani14111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
The Pacific blue shrimp (Litopenaeus stylirostris) is a premium product in the international seafood market. However, intensified farming has increased disease incidence and reduced genetic diversity. In this study, we developed a transcriptome database for L. stylirostris and mined microsatellite markers to analyze their genetic diversity. Using the Illumina HiSeq 4000 platform, we identified 53,263 unigenes from muscle, hepatopancreas, the intestine, and lymphoid tissues. Microsatellite analysis identified 36,415 markers from 18,657 unigenes, predominantly dinucleotide repeats. Functional annotation highlighted key disease resistance pathways and enriched categories. The screening and PCR testing of 42 transcriptome-based and 58 literature-based markers identified 40 with successful amplification. The genotyping of 200 broodstock samples revealed that Na, Ho, He, PIC, and FIS values were 3, 0.54 ± 0.05, 0.43 ± 0.09, 0.41 ± 0.22, and 0.17 ± 0.27, respectively, indicating moderate genetic variability and significant inbreeding. Four universal microsatellite markers (CL1472.Contig13, CL517.Contig2, Unigene5692, and Unigene7147) were identified for precise diversity analysis in Pacific blue, Pacific white (Litopenaeus vannamei), and black tiger shrimps (Penaeus monodon). The transcriptome database supports the development of markers and functional gene analysis for selective breeding programs. Our findings underscore the need for an appropriate genetic management system to mitigate inbreeding depression, reduce disease susceptibility, and preserve genetic diversity in farmed shrimp populations.
Collapse
Affiliation(s)
- Ya-Chi Yang
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
| | - Pei-Yun Chu
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
| | - Che-Chun Chen
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Academia Sinica Road, Sec. 2, Nankang, Taipei 11529, Taiwan;
| | - Te-Hua Hsu
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan;
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan;
| | - I Chiu Liao
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan;
| | - Chang-Wen Huang
- Department of Aquaculture, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan; (Y.-C.Y.); (P.-Y.C.); (C.-C.C.); (T.-H.H.); (H.-Y.G.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Road, Jhongjheng District, Keelung City 20224, Taiwan;
| |
Collapse
|
2
|
Wenne R. Microsatellites as Molecular Markers with Applications in Exploitation and Conservation of Aquatic Animal Populations. Genes (Basel) 2023; 14:genes14040808. [PMID: 37107566 PMCID: PMC10138012 DOI: 10.3390/genes14040808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
A large number of species and taxa has been studied for genetic polymorphism. Microsatellites have been known as hypervariable neutral molecular markers with the highest resolution power in comparison with any other markers. However, the discovery of a new type of molecular marker—single nucleotide polymorphism (SNP) has put the existing applications of microsatellites to the test. To ensure good resolution power in studies of populations and individuals, a number of microsatellite loci from 14 to 20 was often used, which corresponds to about 200 independent alleles. Recently, these numbers have tended to be increased by the application of genomic sequencing of expressed sequence tags (ESTs), and the choice of the most informative loci for genotyping depends on the aims of research. Examples of successful applications of microsatellite molecular markers in aquaculture, fisheries, and conservation genetics in comparison with SNPs have been summarized in this review. Microsatellites can be considered superior markers in such topics as kinship and parentage analysis in cultured and natural populations, the assessment of gynogenesis, androgenesis and ploidization. Microsatellites can be coupled with SNPs for mapping QTL. Microsatellites will continue to be used in research on genetic diversity in cultured stocks, and also in natural populations as an economically advantageous genotyping technique.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
3
|
Microsatellite Analysis Revealed Potential DNA Markers for Gestation Length and Sub-Population Diversity in Kari Sheep. Animals (Basel) 2022; 12:ani12233292. [PMID: 36496813 PMCID: PMC9736151 DOI: 10.3390/ani12233292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Kari sheep inhabiting the Chitral district of Pakistan show variation in gestation length. In this study, we have analyzed the genetic differences between the three subtypes of Kari sheep (based on variation in gestation length) using microsatellite markers. Kari sheep samples were collected from their breeding tract and were characterized for gestation length and genetic diversity using microsatellite markers. A total of 78 Kari ewes were grouped into three categories based on gestation length (GL), i.e., Kari-S (with a shorter GL), Kari-M (with a medium GL), and Kari-L (with a longer GL). DNA from these samples was used to amplify 31 ovine-specific microsatellite loci through PCR. Of the total 78 Kari specimens, 24 were grouped in Kari-S (GL = 100.7 ± 1.8), 26 were from the Kari-M subtype (GL = 123.1 ± 1.0), and 28 were Kari-L (GL = 143.8 ± 1.5). Microsatellite analysis revealed an association of genotypes at two marker sites (MAF214 and ILSTS5) with variation in GL. A total of 158 alleles were detected across the 22 polymorphic loci with an average of 7.18 alleles per locus. Unique alleles were found in all three subtypes. The highest number of unique alleles was observed in Kari-L (15), followed by Kari-S (10) and Kari-M (8). The results indicated that Kari-S is a genetically distinct subtype (with higher genetic differentiation and distance) from Kari-M and Kari-L. The genetic uniqueness of Kari-S is important for further exploration of the genetic basis for shorter gestation length, and exploitation of their unique values.
Collapse
|