1
|
Kumar M, He X, Navathe S, Kamble U, Patial M, Singh PK. Identification of resistance sources and genomic regions regulating Septoria tritici blotch resistance in South Asian bread wheat germplasm. THE PLANT GENOME 2025; 18:e20531. [PMID: 39601058 PMCID: PMC11726422 DOI: 10.1002/tpg2.20531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 11/29/2024]
Abstract
The Septoria tritici blotch (STB) [Zymoseptoria tritici (Desm.)] of wheat (Triticum aestivum L.) is characterized by its polycyclic and hemibiotrophic nature. It is one of the most dangerous diseases affecting wheat production worldwide. Durable resistance is largely decided by the combined effect of several quantitative trait loci (QTLs) having a minor effect. Currently, STB is not important in South Asia. However, STB expanding and wider adaptability, changing climatic conditions, and agronomic practices can create a situation of concern. Therefore, dissection of the genetic architecture of adult-plant resistance with genome-wide association mapping and selection of resistant sources for adult plant STB resistance were carried out on a panel of South Asian germplasm. We discovered the 91 quantitative trait nucleotides (QTNs) associated with STB resistance; 23 QTNs were repetitive across the different years and models. Many of these QTNs could differentiate the mapping panel into resistant versus susceptible groups and were linked to candidate genes related to disease resistance functions within linkage disequilibrium blocks. The repetitive QTNs, namely, Q.CIM.stb.2DL.2, Q.CIM.stb_dh.2DL.3, Q.CIM.stb.2AL.5, and Q.CIM.stb.7BL.1, may be novel due to the absence of co-localization of previously reported QTLs, meta-quantitative trait loci, and STB genes. There was a perfect negative correlation between the stacking of favorable alleles and STB susceptibility, and STB resistance response was improved by ∼50% with the stacking of ≥60% favorable alleles. The genotypes, namely, CIM20, CIM56, CIM57, CIM18, CIM44, WK2395, and K1317, could be used as resistant sources in wheat breeding programs. Therefore, this study could aid in designing the breeding programs for STB resistance before the onset of the alarming situation of STB in South Asia.
Collapse
Affiliation(s)
- Manjeet Kumar
- ICAR‐Indian Agricultural Research InstituteNew DelhiIndia
| | - Xinyao He
- International Maize and Wheat Improvement Centre (CIMMYT) ApedoMexico DFMexico
| | | | - Umesh Kamble
- ICAR‐Indian Institute of Wheat and Barley ResearchKarnalIndia
| | - Madhu Patial
- ICAR‐Indian Agricultural Research Institute, Regional StationShimlaIndia
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Centre (CIMMYT) ApedoMexico DFMexico
| |
Collapse
|
2
|
Thauvin JN, Gélisse S, Cambon F, Langin T, Marcel TC, Saintenac C. The genetic architecture of resistance to septoria tritici blotch in French wheat cultivars. BMC PLANT BIOLOGY 2024; 24:1212. [PMID: 39701973 DOI: 10.1186/s12870-024-05898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Septoria tritici blotch (STB) is one of the most damaging wheat diseases worldwide, and the development of resistant cultivars is of paramount importance for sustainable crop management. However, the genetic basis of the resistance present in elite wheat cultivars remains largely unknown, which limits the implementation of this strategy. A collection of 285 wheat cultivars originating mostly from France was challenged with ten Zymoseptoria tritici isolates at the seedling stage. The collection was further evaluated in seven field trials across France using artificial inoculation. RESULTS Genome-wide association study resulted in the detection of 57 wheat QTL, among which 40 were detected at the seedling stage. Three quarters of these QTL were in genomic regions previously reported for to confer resistance to Z. tritici, but 10 QTL are novel and may be of special interest as new sources of resistance. Some QTL colocalise with major Stb resistance genes, suggesting their presence in the French elite winter wheat germplasm. Among them, the three QTL with the strongest effect colocalize with Stb6, Stb9 and Stb18. There was minimal overlap between the QTL detected at the seedling and adult plant stages, with only 1 out of 20 seedling QTL also being detected in field trials inoculated with the same isolate. This suggests that different resistance genes are involved at the seedling and adult plant stages. CONCLUSION This work reveals the highly complex genetic architecture of French wheat resistance to STB and provides relatively small QTL intervals, which will be valuable for identifying the underlying causative genes and for marker-assisted selection.
Collapse
Affiliation(s)
- Jean-Noël Thauvin
- Université Clermont Auvergne, INRAE, UMR GDEC, Clermont-Ferrand, France
- Present address: RAGT Semences, Druelle, 12510, France
| | | | - Florence Cambon
- Université Clermont Auvergne, INRAE, UMR GDEC, Clermont-Ferrand, France
| | - Thierry Langin
- Université Clermont Auvergne, INRAE, UMR GDEC, Clermont-Ferrand, France
| | | | - Cyrille Saintenac
- Université Clermont Auvergne, INRAE, UMR GDEC, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Patial M, Navathe S, He X, Kamble U, Kumar M, Joshi AK, Singh PK. Novel resistance loci for quantitative resistance to Septoria tritici blotch in Asian wheat (Triticum aestivum) via genome-wide association study. BMC PLANT BIOLOGY 2024; 24:846. [PMID: 39251916 PMCID: PMC11382471 DOI: 10.1186/s12870-024-05547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Septoria tritici blotch (STB) disease causes yield losses of up to 50 per cent in susceptible wheat cultivars and can reduce wheat production. In this study, genomic architecture for adult-plant STB resistance in a Septoria Association Mapping Panel (SAMP) having 181 accessions and genomic regions governing STB resistance in a South Asian wheat panel were looked for. RESULTS Field experiments during the period from 2019 to 2021 revealed those certain accessions, namely BGD52 (CHIR7/ANB//CHIR1), BGD54 (CHIR7/ANB//CHIR1), IND92 (WH 1218), IND8 (DBW 168), and IND75 (PBW 800), exhibited a high level of resistance. Genetic analysis revealed the presence of 21 stable quantitative trait nucleotides (QTNs) associated with resistance to STB (Septoria tritici blotch) on all wheat chromosomes, except for 2D, 3A, 3D, 4A, 4D, 5D, 6B, 6D, and 7A. These QTNs were predominantly located in chromosome regions previously identified as associated with STB resistance. Three Quantitative Trait Loci (QTNs) were found to have significant phenotypic effects in field evaluations. These QTNs are Q.STB.5A.1, Q.STB.5B.1, and Q.STB.5B.3. Furthermore, it is possible that the QTNs located on chromosomes 1A (Q.STB.1A.1), 2A (Q.STB_DH.2A.1, Q.STB.2A.3), 2B (Q.STB.2B.4), 5A (Q.STB.5A.1, Q.STB.5A.2), and 7B (Q.STB.7B.2) could potentially be new genetic regions associated with resistance. CONCLUSION Our findings demonstrate the importance of Asian bread wheat as a source of STB resistance alleles and novel stable QTNs for wheat breeding programs aiming to develop long-lasting and wide-ranging resistance to Zymoseptoria tritici in wheat cultivars.
Collapse
Affiliation(s)
- Madhu Patial
- ICAR-Indian Agricultural Research Institute, Regional Station, Shimla, 171004, India
| | - Sudhir Navathe
- Agharkar Research Institute, G.G. Agharkar Road, Pune, 411004, India
| | - Xinyao He
- International Maize and Wheat Improvement Centre (CIMMYT) Apdo, Postal 6-641, Mexico City, Mexico
| | - Umesh Kamble
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Manjeet Kumar
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia, NASC Complex, G-2, B-Block, New Delhi, 110012, India
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Centre (CIMMYT) Apdo, Postal 6-641, Mexico City, Mexico.
| |
Collapse
|
4
|
Battache M, Suarez-Fernandez M, Klooster MV, Cambon F, Sánchez-Vallet A, Lebrun MH, Langin T, Saintenac C. Stomatal penetration: the cornerstone of plant resistance to the fungal pathogen Zymoseptoria tritici. BMC PLANT BIOLOGY 2024; 24:736. [PMID: 39095719 PMCID: PMC11295904 DOI: 10.1186/s12870-024-05426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Septoria tritici blotch (STB), caused by the foliar fungus Zymoseptoria tritici, is one of the most damaging disease of wheat in Europe. Genetic resistance against this fungus relies on different types of resistance from non-host resistance (NHR) and host species specific resistance (HSSR) to host resistance mediated by quantitative trait loci (QTLs) or major resistance genes (Stb). Characterizing the diversity of theses resistances is of great importance for breeding wheat cultivars with efficient and durable resistance. While the functional mechanisms underlying these resistance types are not well understood, increasing piece of evidence suggest that fungus stomatal penetration and early establishment in the apoplast are both crucial for the outcome of some interactions between Z. tritici and plants. To validate and extend these previous observations, we conducted quantitative comparative phenotypical and cytological analyses of the infection process corresponding to 22 different interactions between plant species and Z. tritici isolates. These interactions included four major bread wheat Stb genes, four bread wheat accessions with contrasting quantitative resistance, two species resistant to Z. tritici isolates from bread wheat (HSSR) and four plant species resistant to all Z. tritici isolates (NHR). RESULTS Infiltration of Z. tritici spores into plant leaves allowed the partial bypass of all bread wheat resistances and durum wheat resistance, but not resistances from other plants species. Quantitative comparative cytological analysis showed that in the non-grass plant Nicotiana benthamiana, Z. tritici was stopped before stomatal penetration. By contrast, in all resistant grass plants, Z. tritici was stopped, at least partly, during stomatal penetration. The intensity of this early plant control process varied depending on resistance types, quantitative resistances being the least effective. These analyses also demonstrated that Stb-mediated resistances, HSSR and NHR, but not quantitative resistances, relied on the strong growth inhibition of the few Z. tritici penetrating hyphae at their entry point in the sub-stomatal cavity. CONCLUSIONS In addition to furnishing a robust quantitative cytological assessment system, our study uncovered three stopping patterns of Z. tritici by plant resistances. Stomatal resistance was found important for most resistances to Z. tritici, independently of its type (Stb, HSSR, NHR). These results provided a basis for the functional analysis of wheat resistance to Z. tritici and its improvement.
Collapse
Affiliation(s)
- Mélissa Battache
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, France
| | - Marta Suarez-Fernandez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Technología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, 28223, Spain
| | | | - Florence Cambon
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, France
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Technología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Marc-Henri Lebrun
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| | - Thierry Langin
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, France
| | - Cyrille Saintenac
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, France.
| |
Collapse
|
5
|
Radecka-Janusik M, Piechota U, Piaskowska D, Słowacki P, Bartosiak S, Czembor P. Haplotype-based association mapping of genomic regions associated with Zymoseptoria tritici resistance using 217 diverse wheat genotypes. BMC PLANT BIOLOGY 2024; 24:682. [PMID: 39020304 PMCID: PMC11256644 DOI: 10.1186/s12870-024-05400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Septoria tritici blotch (STB) is considered to be one of the most destructive foliar wheat diseases and is caused by Zymoseptoria tritici. The yield losses are severe and in Northwestern Europe can reach up to 50%. The efficacy of fungicides is diminishing due to changes in the genetic structure of the pathogen. Therefore, resistance breeding is the most effective strategy of disease management. Recently, genome-wide association studies (GWAS) have become more popular due to their robustness in dissecting complex traits, including STB resistance in wheat. This was made possible by the use of large mapping populations and new sequencing technologies. High-resolution mapping benefits from historical recombination and greater allele numbers in GWAS. RESULTS In our study, 217 wheat genotypes of diverse origin were phenotyped against five Z. tritici isolates (IPO323, IPO88004, IPO92004, IPO86036 and St1-03) and genotyped on the DArTseq platform. In polytunnel tests two disease parameters were evaluated: the percentage of leaf area covered by necrotic lesions (NEC) and the percentage of leaf area covered by lesions bearing pycnidia (PYC). The disease escape parameters heading date (Hd) and plant height (Ht) were also measured. Pearson's correlation showed a positive effect between disease parameters, providing additional information. The Structure analysis indicated four subpopulations which included from 28 (subpopulation 2) to 79 genotypes (subpopulation 3). All of the subpopulations showed a relatively high degree of admixture, which ranged from 60% of genotypes with less than 80% of proportions of the genome attributed to assigned subpopulation for group 2 to 85% for group 4. Haplotype-based GWAS analysis allowed us to identify 27 haploblocks (HBs) significantly associated with analysed traits with a p-value above the genome-wide significance threshold (5%, which was -log10(p) > 3.64) and spread across the wheat genome. The explained phenotypic variation of identified significant HBs ranged from 0.2% to 21.5%. The results of the analysis showed that four haplotypes (HTs) associated with disease parameters cause a reduction in the level of leaf coverage by necrosis and pycnidia, namely: Chr3A_HB98_HT2, Chr5B_HB47_HT1, Chr7B_HB36_HT1 and Chr5D_HB10_HT3. CONCLUSIONS GWAS analysis enabled us to identify four significant chromosomal regions associated with a reduction in STB disease parameters. The list of valuable HBs and wheat varieties possessing them provides promising material for further molecular analysis of resistance loci and development of breeding programmes.
Collapse
Affiliation(s)
- Magdalena Radecka-Janusik
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Błonie, 05-870, Poland
| | - Urszula Piechota
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Błonie, 05-870, Poland
| | - Dominika Piaskowska
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Błonie, 05-870, Poland
| | - Piotr Słowacki
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Błonie, 05-870, Poland
| | - Sławomir Bartosiak
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Błonie, 05-870, Poland
| | - Paweł Czembor
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Błonie, 05-870, Poland.
| |
Collapse
|
6
|
Qutb AM, Cambon F, McDonald MC, Saintenac C, Kettles GJ. The Egyptian wheat cultivar Gemmeiza-12 is a source of resistance against the fungus Zymoseptoria tritici. BMC PLANT BIOLOGY 2024; 24:248. [PMID: 38580955 PMCID: PMC10996218 DOI: 10.1186/s12870-024-04930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Wheat is one of the world's most important cereal crops. However, the fungal pathogen Zymoseptoria tritici can cause disease epidemics, leading to reduced yields. With climate change and development of new agricultural areas with suitable environments, Z. tritici may advance into geographical areas previously unaffected by this pathogen. It is currently unknown how Egyptian wheat will perform in the face of this incoming threat. This project aimed to assess the resistance of Egyptian wheat germplasm to Z. tritici, to identify cultivars with high levels of resistance and characterise the mechanism(s) of resistance present in these cultivars. RESULTS Eighteen Egyptian wheat cultivars were screened against two Z. tritici model isolates and exhibited a wide spectrum of responses. This ranged from resistance to complete susceptibility to one or both isolates tested. The most highly resistant cultivars from the initial screen were then tested under two environmental conditions against modern UK field isolates. Disease levels under UK-like conditions were higher, however, symptom development on the cultivar Gemmeiza-12 was noticeably slower than on other Egyptian wheats. The robustness of the resistance shown by Gemmeiza-12 was confirmed in experiments mimicking Egyptian environmental conditions, where degree of Z. tritici infection was lower. The Kompetitive allele-specific PCR (KASP) diagnostic assay suggested the presence of an Stb6 resistant allele in several Egyptian wheats including Gemmeiza-12. Infection assays using the IPO323 WT and IPO323ΔAvrStb6 mutant confirmed the presence of Stb6 in several Egyptian cultivars including Gemmeiza-12. Confocal fluorescence microscopy demonstrated that growth of the IPO323 strain is blocked at the point of stomatal penetration on Gemmeiza-12, consistent with previous reports of Stb gene mediated resistance. In addition to this R-gene mediated resistance, IPO323 spores showed lower adherence to leaves of Gemmeiza-12 compared to UK wheat varieties, suggesting other aspects of leaf physiology may also contribute to the resistance phenotype of this cultivar. CONCLUSION These results indicate that Gemmeiza-12 will be useful in future breeding programs where improved resistance to Z. tritici is a priority.
Collapse
Affiliation(s)
- Abdelrahman M Qutb
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Florence Cambon
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, 63000, France
| | - Megan C McDonald
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Cyrille Saintenac
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, 63000, France
| | - Graeme J Kettles
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
7
|
Cyplik A, Piaskowska D, Czembor P, Bocianowski J. The use of weighted multiple linear regression to estimate QTL × QTL × QTL interaction effects of winter wheat (Triticum aestivum L.) doubled-haploid lines. J Appl Genet 2023; 64:679-693. [PMID: 37878169 PMCID: PMC10632291 DOI: 10.1007/s13353-023-00795-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
Knowledge of the magnitude of gene effects and their interactions, their nature, and contribution to determining quantitative traits is very important in conducting an effective breeding program. In traditional breeding, information on the parameter related to additive gene effect and additive-additive interaction (epistasis) and higher-order additive interactions would be useful. Although commonly overlooked in studies, higher-order interactions have a significant impact on phenotypic traits. Failure to account for the effect of triplet interactions in quantitative genetics can significantly underestimate additive QTL effects. Understanding the genetic architecture of quantitative traits is a major challenge in the post-genomic era, especially for quantitative trait locus (QTL) effects, QTL-QTL interactions, and QTL-QTL-QTL interactions. This paper proposes using weighted multiple linear regression to estimate the effects of triple interaction (additive-additive-additive) quantitative trait loci (QTL-QTL-QTL). The material for the study consisted of 126 doubled haploid lines of winter wheat (Mandub × Begra cross). The lines were analyzed for 18 traits, including percentage of necrosis leaf area, percentage of leaf area covered by pycnidia, heading data, and height. The number of genes (the number of effective factors) was lower than the number of QTLs for nine traits, higher for four traits and equal for five traits. The number of triples for unweighted regression ranged from 0 to 9, while for weighted regression, it ranged from 0 to 13. The total aaagu effect ranged from - 14.74 to 15.61, while aaagw ranged from - 23.39 to 21.65. The number of detected threes using weighted regression was higher for two traits and lower for four traits. Forty-nine statistically significant threes of the additive-by-additive-by-additive interaction effects were observed. The QTL most frequently occurring in threes was 4407404 (9 times). The use of weighted regression improved (in absolute value) the assessment of QTL-QTL-QTL interaction effects compared to the assessment based on unweighted regression. The coefficients of determination for the weighted regression model were higher, ranging from 0.8 to 15.5%, than for the unweighted regression. Based on the results, it can be concluded that the QTL-QTL-QTL triple interaction had a significant effect on the expression of quantitative traits. The use of weighted multiple linear regression proved to be a useful statistical tool for estimating additive-additive-additive (aaa) interaction effects. The weighted regression also provided results closer to phenotypic evaluations than estimator values obtained using unweighted regression, which is closer to the true values.
Collapse
Affiliation(s)
- Adrian Cyplik
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Dominika Piaskowska
- Plant Breeding and Acclimatization Institute - National Research Institute, Department of Applied Biology, Radzików, 05-870, Błonie, Poland
| | - Paweł Czembor
- Plant Breeding and Acclimatization Institute - National Research Institute, Department of Applied Biology, Radzików, 05-870, Błonie, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland.
| |
Collapse
|
8
|
Hood ME, Nelson S, Cho J, Launi M, Antonovics J, Bruns EL. Quantitative disease resistance in wild Silene vulgaris to its endemic pathogen Microbotryum silenes-inflatae. Ecol Evol 2023; 13:e10797. [PMID: 38125956 PMCID: PMC10731388 DOI: 10.1002/ece3.10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The evolution of disease resistances is an expected feature of plant-pathogen systems, but whether the genetics of this trait most often produces qualitative or quantitative phenotypic variation is a significant gap in our understanding of natural populations. These two forms of resistance variation are often associated with differences in number of underlying loci, the specificities of host-pathogen coevolution, as well as contrasting mechanisms of preventing or slowing the infection process. Anther-smut disease is a commonly studied model for disease of wild species, where infection has severe fitness impacts, and prior studies have suggested resistance variation in several host species. However, because the outcome of exposing the individual host to this pathogen is binary (healthy or diseased), resistance has been previously measured at the family level, as the proportion of siblings that become diseased. This leaves uncertain whether among-family variation reflects contrasting ratios of segregating discrete phenotypes or continuous trait variation among individuals. In the host Silene vulgaris, plants were replicated by vegetative propagation in order to quantify the infection rates of the individual genotype with the endemic anther-smut pathogen, Microbotryum silenes-inflatae. The variance among field-collected families for disease resistance was significant, while there was unimodal continuous variation in resistance among genotypes. Using crosses between genotypes within ranked resistance quartiles, the offspring infection rate was predicted by the parental resistance values. While the potential remains in this system for resistance genes having major effects, as there were suggestions of such qualitative resistance in a prior study, here the quantitative disease resistance to the endemic anther-smut pathogen is indicated for S. vulgaris. The variation in natural populations and strong heritability of the trait, combined with severe fitness consequences of anther-smut disease, suggests that resistance in these host populations is highly capable of responding to disease-induced selection.
Collapse
Affiliation(s)
| | - Sydney Nelson
- Department of BiologyAmherst CollegeAmherstMassachusettsUSA
| | - Jae‐Hoon Cho
- Department of BiologyAmherst CollegeAmherstMassachusettsUSA
| | - Michelle Launi
- Department of BiologyAmherst CollegeAmherstMassachusettsUSA
| | - Janis Antonovics
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Emily L. Bruns
- Department of BiologyUniversity of Maryland at College ParkCollege ParkMarylandUSA
| |
Collapse
|
9
|
Mazzucotelli E, Mastrangelo AM. Coping with Fungal Diseases in Crops: New Advances in Genomics, Breeding and Management. Genes (Basel) 2023; 14:1758. [PMID: 37761898 PMCID: PMC10531414 DOI: 10.3390/genes14091758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 09/29/2023] Open
Abstract
This Special Issue comprises a collection of eight peer-reviewed articles centered around the plant-pathogen interaction with the aim of proposing strategies that enhance plant resistance to pathogens and limit the damage to crop production, utilizing a multidisciplinary approach [...].
Collapse
Affiliation(s)
- Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinfomatics, 29017 Fiorenzuola d’Arda, Italy;
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy
| |
Collapse
|
10
|
Amezrou R, Audéon C, Compain J, Gélisse S, Ducasse A, Saintenac C, Lapalu N, Louet C, Orford S, Croll D, Amselem J, Fillinger S, Marcel TC. A secreted protease-like protein in Zymoseptoria tritici is responsible for avirulence on Stb9 resistance gene in wheat. PLoS Pathog 2023; 19:e1011376. [PMID: 37172036 DOI: 10.1371/journal.ppat.1011376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/24/2023] [Accepted: 04/19/2023] [Indexed: 05/14/2023] Open
Abstract
Zymoseptoria tritici is the fungal pathogen responsible for Septoria tritici blotch on wheat. Disease outcome in this pathosystem is partly determined by isolate-specific resistance, where wheat resistance genes recognize specific fungal factors triggering an immune response. Despite the large number of known wheat resistance genes, fungal molecular determinants involved in such cultivar-specific resistance remain largely unknown. We identified the avirulence factor AvrStb9 using association mapping and functional validation approaches. Pathotyping AvrStb9 transgenic strains on Stb9 cultivars, near isogenic lines and wheat mapping populations, showed that AvrStb9 interacts with Stb9 resistance gene, triggering an immune response. AvrStb9 encodes an unusually large avirulence gene with a predicted secretion signal and a protease domain. It belongs to a S41 protease family conserved across different filamentous fungi in the Ascomycota class and may constitute a core effector. AvrStb9 is also conserved among a global Z. tritici population and carries multiple amino acid substitutions caused by strong positive diversifying selection. These results demonstrate the contribution of an 'atypical' conserved effector protein to fungal avirulence and the role of sequence diversification in the escape of host recognition, adding to our understanding of host-pathogen interactions and the evolutionary processes underlying pathogen adaptation.
Collapse
Affiliation(s)
- Reda Amezrou
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Colette Audéon
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Jérôme Compain
- Université Paris-Saclay, INRAE, UR URGI, Versailles, France
| | | | - Aurélie Ducasse
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | | | - Nicolas Lapalu
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
- Université Paris-Saclay, INRAE, UR URGI, Versailles, France
| | | | - Simon Orford
- Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Daniel Croll
- University of Neuchâtel, Laboratory of Evolutionary Genetics, Neuchâtel, Switzerland
| | - Joëlle Amselem
- Université Paris-Saclay, INRAE, UR URGI, Versailles, France
| | | | | |
Collapse
|
11
|
Langlands-Perry C, Pitarch A, Lapalu N, Cuenin M, Bergez C, Noly A, Amezrou R, Gélisse S, Barrachina C, Parrinello H, Suffert F, Valade R, Marcel TC. Quantitative and qualitative plant-pathogen interactions call upon similar pathogenicity genes with a spectrum of effects. FRONTIERS IN PLANT SCIENCE 2023; 14:1128546. [PMID: 37235026 PMCID: PMC10206311 DOI: 10.3389/fpls.2023.1128546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Septoria leaf blotch is a foliar wheat disease controlled by a combination of plant genetic resistances and fungicides use. R-gene-based qualitative resistance durability is limited due to gene-for-gene interactions with fungal avirulence (Avr) genes. Quantitative resistance is considered more durable but the mechanisms involved are not well documented. We hypothesize that genes involved in quantitative and qualitative plant-pathogen interactions are similar. A bi-parental population of Zymoseptoria tritici was inoculated on wheat cultivar 'Renan' and a linkage analysis performed to map QTL. Three pathogenicity QTL, Qzt-I05-1, Qzt-I05-6 and Qzt-I07-13, were mapped on chromosomes 1, 6 and 13 in Z. tritici, and a candidate pathogenicity gene on chromosome 6 was selected based on its effector-like characteristics. The candidate gene was cloned by Agrobacterium tumefaciens-mediated transformation, and a pathology test assessed the effect of the mutant strains on 'Renan'. This gene was demonstrated to be involved in quantitative pathogenicity. By cloning a newly annotated quantitative-effect gene in Z. tritici that is effector-like, we demonstrated that genes underlying pathogenicity QTL can be similar to Avr genes. This opens up the previously probed possibility that 'gene-for-gene' underlies not only qualitative but also quantitative plant-pathogen interactions in this pathosystem.
Collapse
Affiliation(s)
- Camilla Langlands-Perry
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
- ARVALIS Institut du Végétal, Boigneville, France
| | - Anaïs Pitarch
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Nicolas Lapalu
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Murielle Cuenin
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | | | - Alicia Noly
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Reda Amezrou
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | | | - Célia Barrachina
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | |
Collapse
|
12
|
Wang H, Cui C, Liu Y, Zheng Y, Zhao Y, Chen X, Wang X, Jing B, Mei H, Wang Z. Genetic mapping of QTLs controlling brown seed coat traits by genome resequencing in sesame ( Sesamum indicum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1131975. [PMID: 36909448 PMCID: PMC9995652 DOI: 10.3389/fpls.2023.1131975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Introduction Sesame seeds have become an irreplaceable source of edible oils and food products with rich nutrients and a unique flavor, and their metabolite contents and physiological functions vary widely across different seed coat colors. Although the quantitative trait loci (QTLs) for genetic variation in seed coat color have been extensively investigated, the identification of unique genetic loci for intermediate colors such as brown has not been reported due to their complexity. Methods Here, we crossed the white sesame 'Yuzhi No. 8' (YZ8) and the brown sesame 'Yanzhou Erhongpi' (YZEHP) to construct a recombinant inbred line (RIL) population with consecutive self-fertilization for ten generations. Results The selfed F1 seeds were brown which was controlled by a dominant gene. Based on the genotyping by whole-genome resequencing of the RILs, a major-effect QTL for brown coat color was identified through both bulk segregant analysis (BSA) and genetic linkage mapping in sesame, which was located within a 1.19 Mb interval on chromosome 6 (qBSCchr6). Moreover, we found that the YZEHP seed coat initially became pigmented at 20 days post-anthesis (DPA) and was substantially colored at 30 DPA. We screened 13 possible candidate genes based on the effects of genetic variants on protein coding and predicted gene functions. Furthermore, qRT‒PCR was used to verify the expression patterns of these genes in different post-anthesis developmental periods. We noted that in comparison to YZ8 seeds, YZEHP seeds had expression of SIN_1023239 that was significantly up-regulated 2.5-, 9.41-, 6.0-, and 5.9-fold at 15, 20, 25, and 30 DPA, respectively, which was consistent with the pattern of brown seed coat pigment accumulation. Discussion This study identified the first major-effect QTL for the control of the brown seed coat trait in sesame. This finding lays the foundation for further fine mapping and cloning as well as investigating the regulatory mechanism of seed coat color in sesame.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Chengqi Cui
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Yanyang Liu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Yongzhan Zheng
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Yiqing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiaoqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xueqi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Bing Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Hongxian Mei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Yang N, Ovenden B, Baxter B, McDonald MC, Solomon PS, Milgate A. Multi-stage resistance to Zymoseptoria tritici revealed by GWAS in an Australian bread wheat diversity panel. FRONTIERS IN PLANT SCIENCE 2022; 13:990915. [PMID: 36352863 PMCID: PMC9637935 DOI: 10.3389/fpls.2022.990915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Septoria tritici blotch (STB) has been ranked the third most important wheat disease in the world, threatening a large area of wheat production. Although major genes play an important role in the protection against Zymoseptoria tritici infection, the lifespan of their resistance unfortunately is very short in modern wheat production systems. Combinations of quantitative resistance with minor effects, therefore, are believed to have prolonged and more durable resistance to Z. tritici. In this study, new quantitative trait loci (QTLs) were identified that are responsible for seedling-stage resistance and adult-plant stage resistance (APR). More importantly was the characterisation of a previously unidentified QTL that can provide resistance during different stages of plant growth or multi-stage resistance (MSR). At the seedling stage, we discovered a new isolate-specific QTL, QSt.wai.1A.1. At the adult-plant stage, the new QTL QStb.wai.6A.2 provided stable and consistent APR in multiple sites and years, while the QTL QStb.wai.7A.2 was highlighted to have MSR. The stacking of multiple favourable MSR alleles was found to improve resistance to Z. tritici by up to 40%.
Collapse
Affiliation(s)
- Nannan Yang
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Ben Ovenden
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Brad Baxter
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Megan C. McDonald
- University of Birmingham, School of Biosciences, Birmingham, West Midlands, United Kingdom
| | - Peter S. Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Andrew Milgate
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| |
Collapse
|
14
|
Maldonado-Taipe N, Barbier F, Schmid K, Jung C, Emrani N. High-Density Mapping of Quantitative Trait Loci Controlling Agronomically Important Traits in Quinoa ( Chenopodium quinoa Willd.). FRONTIERS IN PLANT SCIENCE 2022; 13:916067. [PMID: 35812962 PMCID: PMC9261497 DOI: 10.3389/fpls.2022.916067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Quinoa is a pseudocereal originating from the Andean regions. Despite quinoa's long cultivation history, genetic analysis of this crop is still in its infancy. We aimed to localize quantitative trait loci (QTL) contributing to the phenotypic variation of agronomically important traits. We crossed the Chilean accession PI-614889 and the Peruvian accession CHEN-109, which depicted significant differences in days to flowering, days to maturity, plant height, panicle length, and thousand kernel weight (TKW), saponin content, and mildew susceptibility. We observed sizeable phenotypic variation across F2 plants and F3 families grown in the greenhouse and the field, respectively. We used Skim-seq to genotype the F2 population and constructed a high-density genetic map with 133,923 single nucleotide polymorphism (SNPs). Fifteen QTL were found for ten traits. Two significant QTL, common in F2 and F3 generations, depicted pleiotropy for days to flowering, plant height, and TKW. The pleiotropic QTL harbored several putative candidate genes involved in photoperiod response and flowering time regulation. This study presents the first high-density genetic map of quinoa that incorporates QTL for several important agronomical traits. The pleiotropic loci can facilitate marker-assisted selection in quinoa breeding programs.
Collapse
Affiliation(s)
| | - Federico Barbier
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Karl Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
15
|
Mahboubi M, Talebi R, Mehrabi R, Mohammad Naji A, Maccaferri M, Kema GHJ. Genetic analysis of novel resistance sources and genome-wide association mapping identified novel QTLs for resistance to Zymoseptoria tritici, the causal agent of septoria tritici blotch in wheat. J Appl Genet 2022; 63:429-445. [PMID: 35482212 DOI: 10.1007/s13353-022-00696-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Septoria tritici blotch (STB) caused by Zymoseptoria tritici is one of the most important foliar diseases of wheat causing significant yield losses worldwide. In this study, a panel of bread wheat genotypes comprised 185 globally diverse genotypes were tested against 10 Z. tritici isolates at the seedling stage. Genome-wide association study (GWAS) using high-throughput DArTseq markers was performed and further gene expression analysis of significant markers trait association (MTAs) associated with resistance to STB was analyzed. Disease severity level showed significant differences among wheat genotypes for resistance to different Z. tritici isolates. We found novel landrace genotypes that showed highly resistance spectra to all tested isolates. GWAS analysis resulted in 19 quantitative trait loci (QTLs) for resistance to STB that were located on 14 chromosomes. Overall, 14 QTLs were overlapped with previously known QTLs or resistance genes, as well as five potentially novel QTLs on chromosomes 1A, 4A, 5B, 5D, and 6D. Identified novel resistance sources and also novel QTLs for resistance to different Z. tritici isolates can be used for gene pyramiding and development of durable resistance cultivars in future wheat breeding programs.
Collapse
Affiliation(s)
- Mozghan Mahboubi
- Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Reza Talebi
- Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran. .,Keygene N.V, P.O. Box 216, 6700 AE, Wageningen, Netherlands.
| | - Rahim Mehrabi
- Keygene N.V, P.O. Box 216, 6700 AE, Wageningen, Netherlands. .,Department of Biotechnology, College of Agriculture, Isfahan University of Technology, POBox 8415683111, Isfahan, Iran.
| | - Amir Mohammad Naji
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, Iran
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Gert H J Kema
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
16
|
Paux E, Lafarge S, Balfourier F, Derory J, Charmet G, Alaux M, Perchet G, Bondoux M, Baret F, Barillot R, Ravel C, Sourdille P, Le Gouis J. Breeding for Economically and Environmentally Sustainable Wheat Varieties: An Integrated Approach from Genomics to Selection. BIOLOGY 2022; 11:149. [PMID: 35053148 PMCID: PMC8773325 DOI: 10.3390/biology11010149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/21/2022]
Abstract
There is currently a strong societal demand for sustainability, quality, and safety in bread wheat production. To address these challenges, new and innovative knowledge, resources, tools, and methods to facilitate breeding are needed. This starts with the development of high throughput genomic tools including single nucleotide polymorphism (SNP) arrays, high density molecular marker maps, and full genome sequences. Such powerful tools are essential to perform genome-wide association studies (GWAS), to implement genomic and phenomic selection, and to characterize the worldwide diversity. This is also useful to breeders to broaden the genetic basis of elite varieties through the introduction of novel sources of genetic diversity. Improvement in varieties particularly relies on the detection of genomic regions involved in agronomical traits including tolerance to biotic (diseases and pests) and abiotic (drought, nutrient deficiency, high temperature) stresses. When enough resolution is achieved, this can result in the identification of candidate genes that could further be characterized to identify relevant alleles. Breeding must also now be approached through in silico modeling to simulate plant development, investigate genotype × environment interactions, and introduce marker-trait linkage information in the models to better implement genomic selection. Breeders must be aware of new developments and the information must be made available to the world wheat community to develop new high-yielding varieties that can meet the challenge of higher wheat production in a sustainable and fluctuating agricultural context. In this review, we compiled all knowledge and tools produced during the BREEDWHEAT project to show how they may contribute to face this challenge in the coming years.
Collapse
Affiliation(s)
- Etienne Paux
- UMR GDEC Genetics, Diversity & Ecophysiology of Cereals, INRAE—Université Clermont-Auvergne, 5, Chemin de Beaulieu, 63000 Clermont-Ferrand, France; (E.P.); (F.B.); (G.C.); (C.R.); (P.S.)
| | - Stéphane Lafarge
- Limagrain, Chappes Research Center, Route d’Ennezat, 63720 Chappes, France; (S.L.); (J.D.)
| | - François Balfourier
- UMR GDEC Genetics, Diversity & Ecophysiology of Cereals, INRAE—Université Clermont-Auvergne, 5, Chemin de Beaulieu, 63000 Clermont-Ferrand, France; (E.P.); (F.B.); (G.C.); (C.R.); (P.S.)
| | - Jérémy Derory
- Limagrain, Chappes Research Center, Route d’Ennezat, 63720 Chappes, France; (S.L.); (J.D.)
| | - Gilles Charmet
- UMR GDEC Genetics, Diversity & Ecophysiology of Cereals, INRAE—Université Clermont-Auvergne, 5, Chemin de Beaulieu, 63000 Clermont-Ferrand, France; (E.P.); (F.B.); (G.C.); (C.R.); (P.S.)
| | - Michael Alaux
- Université Paris-Saclay—INRAE, URGI, 78026 Versailles, France;
- Université Paris-Saclay—INRAE, BioinfOmics, Plant Bioinformatics Facility, 78026 Versailles, France
| | - Geoffrey Perchet
- Vegepolys Valley, Maison du Végétal, 26 Rue Jean Dixmeras, 49066 Angers, France;
| | - Marion Bondoux
- INRAE—Transfert, 5, Chemin de Beaulieu, 63000 Clermont-Ferrand, France;
| | - Frédéric Baret
- UMR EMMAH, INRAE—Université d’Avignon et des Pays de Vaucluse, 84914 Avignon, France;
| | | | - Catherine Ravel
- UMR GDEC Genetics, Diversity & Ecophysiology of Cereals, INRAE—Université Clermont-Auvergne, 5, Chemin de Beaulieu, 63000 Clermont-Ferrand, France; (E.P.); (F.B.); (G.C.); (C.R.); (P.S.)
| | - Pierre Sourdille
- UMR GDEC Genetics, Diversity & Ecophysiology of Cereals, INRAE—Université Clermont-Auvergne, 5, Chemin de Beaulieu, 63000 Clermont-Ferrand, France; (E.P.); (F.B.); (G.C.); (C.R.); (P.S.)
| | - Jacques Le Gouis
- UMR GDEC Genetics, Diversity & Ecophysiology of Cereals, INRAE—Université Clermont-Auvergne, 5, Chemin de Beaulieu, 63000 Clermont-Ferrand, France; (E.P.); (F.B.); (G.C.); (C.R.); (P.S.)
| | | |
Collapse
|