1
|
Zarrabian M, Sherif SM. Silence is not always golden: A closer look at potential environmental and ecotoxicological impacts of large-scale dsRNA application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175311. [PMID: 39122031 DOI: 10.1016/j.scitotenv.2024.175311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
RNA interference (RNAi) technology has emerged as a pivotal strategy in sustainable pest management, offering a targeted approach that significantly mitigates the environmental and health risks associated with traditional insecticides. Originally implemented through genetically modified organisms (GMOs) to produce specific RNAi constructs, the technology has evolved in response to public and regulatory concerns over GMOs. This evolution has spurred the development of non-transgenic RNAi applications such as spray-induced gene silencing (SIGS), which employs double-stranded RNA (dsRNA) to silence pest genes directly without altering the plant's genetic makeup. Despite its advantages in specificity and reduced ecological footprint, SIGS faces significant obstacles, particularly the instability of dsRNA in field conditions, which limits its practical efficacy. To overcome these limitations, innovative delivery mechanisms have been developed. These include nanotechnology-based systems, minicells, and nanovesicles, which are designed to protect dsRNA from degradation and enhance its delivery to target organisms. While these advancements have improved the stability and application efficiency of dsRNA, comprehensive assessments of their environmental safety and the potential for increased exposure risks to non-target organisms remain incomplete. This comprehensive review aims to elucidate the environmental fate of dsRNA and evaluate the potential risks associated with its widespread application on non-target organisms, encompassing soil microorganisms, beneficial insects, host plants, and mammals. The objective is to establish a more refined framework for RNAi risk assessment within environmental and ecotoxicological contexts, thereby fostering the development of safer, non-transgenic RNAi-based pest control strategies.
Collapse
Affiliation(s)
- Mohammad Zarrabian
- Virginia Tech, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research, and Extension Center, Winchester, VA 22602, United States
| | - Sherif M Sherif
- Virginia Tech, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research, and Extension Center, Winchester, VA 22602, United States.
| |
Collapse
|
2
|
Li Q, Dong M, Chen P. Advances in structural-guided modifications of siRNA. Bioorg Med Chem 2024; 110:117825. [PMID: 38954918 DOI: 10.1016/j.bmc.2024.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
To date, the US Food and Drug Administration (FDA) has approved six small interfering RNA (siRNA) drugs: patisiran, givosiran, lumasiran, inclisiran, vutrisiran, and nedosiran, serving as compelling evidence of the promising potential of RNA interference (RNAi) therapeutics. The successful implementation of siRNA therapeutics is improved through a combination of various chemical modifications and diverse delivery approaches. The utilization of chemically modified siRNA at specific sites on either the sense strand (SS) or antisense strand (AS) has the potential to enhance resistance to ribozyme degradation, improve stability and specificity, and prolong the efficacy of drugs. Herein, we provide comprehensive analyses concerning the correlation between chemical modifications and structure-guided siRNA design. Various modifications, such as 2'-modifications, 2',4'-dual modifications, non-canonical sugar modifications, and phosphonate mimics, are crucial for the activity of siRNA. We also emphasize the essential strategies for enhancing overhang stability, improving RISC loading efficacy and strand selection, reducing off-target effects, and discussing the future of targeted delivery.
Collapse
Affiliation(s)
- Qiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China; Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China.
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Pu Chen
- Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
3
|
Chan A, Haley RM, Najar MA, Gonzalez-Martinez D, Bugaj LJ, Burslem GM, Mitchell MJ, Tsourkas A. Lipid-mediated intracellular delivery of recombinant bioPROTACs for the rapid degradation of undruggable proteins. Nat Commun 2024; 15:5808. [PMID: 38987546 PMCID: PMC11237011 DOI: 10.1038/s41467-024-50235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Recently, targeted degradation has emerged as a powerful therapeutic modality. Relying on "event-driven" pharmacology, proteolysis targeting chimeras (PROTACs) can degrade targets and are superior to conventional inhibitors against undruggable proteins. Unfortunately, PROTAC discovery is limited by warhead scarcity and laborious optimization campaigns. To address these shortcomings, analogous protein-based heterobifunctional degraders, known as bioPROTACs, have been developed. Compared to small-molecule PROTACs, bioPROTACs have higher success rates and are subject to fewer design constraints. However, the membrane impermeability of proteins severely restricts bioPROTAC deployment as a generalized therapeutic modality. Here, we present an engineered bioPROTAC template able to complex with cationic and ionizable lipids via electrostatic interactions for cytosolic delivery. When delivered by biocompatible lipid nanoparticles, these modified bioPROTACs can rapidly degrade intracellular proteins, exhibiting near-complete elimination (up to 95% clearance) of targets within hours of treatment. Our bioPROTAC format can degrade proteins localized to various subcellular compartments including the mitochondria, nucleus, cytosol, and membrane. Moreover, substrate specificity can be easily reprogrammed, allowing modular design and targeting of clinically-relevant proteins such as Ras, Jnk, and Erk. In summary, this work introduces an inexpensive, flexible, and scalable platform for efficient intracellular degradation of proteins that may elude chemical inhibition.
Collapse
Affiliation(s)
- Alexander Chan
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca M Haley
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohd Altaf Najar
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Gonzalez-Martinez
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Mitchell
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Rastgar A, Kheyrandish S, Vahidi M, Heidari R, Ghorbani M. Advancements in small interfering RNAs therapy for acute lymphoblastic leukemia: promising results and future perspectives. Mol Biol Rep 2024; 51:737. [PMID: 38874790 DOI: 10.1007/s11033-024-09650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of cancer among children, presenting significant healthcare challenges for some patients, including drug resistance and the need for targeted therapies. SiRNA-based therapy is one potential solution, but problems can arise in administration and the need for a delivery system to protect siRNA during intravenous injection. Additionally, siRNA encounters instability and degradation in the reticuloendothelial system, off-target effects, and potential immune system stimulation. Despite these limitations, some promising results about siRNA therapy in ALL patients have been published in recent years, showing the potential for more effective and precise treatment, reduced side effects, and personalized approaches. While siRNA-based therapies demonstrate safety and efficacy, addressing the mentioned limitations is crucial for further optimization. Advancements in siRNA-delivery technologies and combination therapies hold promise to improve treatment effectiveness and overcome drug resistance. Ultimately, despite its challenges, siRNA therapy has the potential to revolutionize ALL treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Amirhossein Rastgar
- Student Research Committee, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setare Kheyrandish
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Vahidi
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran, Iran
| | - Reza Heidari
- Cancer Epidemiology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Mahdi Ghorbani
- Department of Hematology, Laboratory Sciences, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran, Iran.
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Chen X, Sun Y, Yang Y, Zhao Y, Zhang C, Fang X, Gao H, Zhao M, He S, Song B, Liu S, Wu J, Xu P, Zhang S. The EIN3 transcription factor GmEIL1 improves soybean resistance to Phytophthora sojae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13452. [PMID: 38619823 PMCID: PMC11018115 DOI: 10.1111/mpp.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Phytophthora root and stem rot of soybean (Glycine max), caused by the oomycete Phytophthora sojae, is an extremely destructive disease worldwide. In this study, we identified GmEIL1, which encodes an ethylene-insensitive3 (EIN3) transcription factor. GmEIL1 was significantly induced following P. sojae infection of soybean plants. Compared to wild-type soybean plants, transgenic soybean plants overexpressing GmEIL1 showed enhanced resistance to P. sojae and GmEIL1-silenced RNA-interference lines showed more severe symptoms when infected with P. sojae. We screened for target genes of GmEIL1 and confirmed that GmEIL1 bound directly to the GmERF113 promoter and regulated GmERF113 expression. Moreover, GmEIL1 positively regulated the expression of the pathogenesis-related gene GmPR1. The GmEIL1-regulated defence response to P. sojae involved both ethylene biosynthesis and the ethylene signalling pathway. These findings suggest that the GmEIL1-GmERF113 module plays an important role in P. sojae resistance via the ethylene signalling pathway.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
- Crop Stress Molecular Biology LaboratoryHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Yan Sun
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Yu Yang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Yuxin Zhao
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Chuanzhong Zhang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Xin Fang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Hong Gao
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Ming Zhao
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Shengfu He
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Bo Song
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Shanshan Liu
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Junjiang Wu
- Key Laboratory of Soybean Cultivation of Ministry of AgricultureSoybean Research Institute of Heilongjiang Academy of Agricultural SciencesHarbinChina
| | - Pengfei Xu
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education MinistrySoybean Research Institute of Northeast Agricultural UniversityHarbinChina
- Plant Science Department, School of Agriculture and BiologyShanghai JiaoTong UniversityShanghaiChina
| |
Collapse
|
6
|
Chan A, Tsourkas A. Intracellular Protein Delivery: Approaches, Challenges, and Clinical Applications. BME FRONTIERS 2024; 5:0035. [PMID: 38282957 PMCID: PMC10809898 DOI: 10.34133/bmef.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Protein biologics are powerful therapeutic agents with diverse inhibitory and enzymatic functions. However, their clinical use has been limited to extracellular applications due to their inability to cross plasma membranes. Overcoming this physiological barrier would unlock the potential of protein drugs for the treatment of many intractable diseases. In this review, we highlight progress made toward achieving cytosolic delivery of recombinant proteins. We start by first considering intracellular protein delivery as a drug modality compared to existing Food and Drug Administration-approved drug modalities. Then, we summarize strategies that have been reported to achieve protein internalization. These techniques can be broadly classified into 3 categories: physical methods, direct protein engineering, and nanocarrier-mediated delivery. Finally, we highlight existing challenges for cytosolic protein delivery and offer an outlook for future advances.
Collapse
Affiliation(s)
| | - Andrew Tsourkas
- Department of Bioengineering,
University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Cazares T, Higgs RE, Wang J, Ozer HG. SeedMatchR: identify off-target effects mediated by siRNA seed regions in RNA-seq experiments. Bioinformatics 2024; 40:btae011. [PMID: 38192001 PMCID: PMC10799297 DOI: 10.1093/bioinformatics/btae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
MOTIVATION On-target gene knockdown, using siRNA, ideally results from binding fully complementary regions in mRNA transcripts to induce direct cleavage. Off-target siRNA gene knockdown can occur through several modes, one being a seed-mediated mechanism mimicking miRNA gene regulation. Seed-mediated off-target effects occur when the ∼8 nucleotides at the 5' end of the guide strand, called a seed region, bind the 3' untranslated regions of mRNA, causing reduced translation. Experiments using siRNA knockdown paired with RNA-seq can be used to detect siRNA sequences with off-target effects driven by the seed region. However, there are limited computational tools designed specifically for detecting siRNA off-target effects mediated by the seed region in differential gene expression experiments. RESULTS SeedMatchR is an R package developed to provide users a single, unified resource for detecting and visualizing seed-mediated off-target effects of siRNA using RNA-seq experiments. SeedMatchR is designed to extend current differential expression analysis tools, such as DESeq2, by annotating results with predicted seed matches. Using publicly available data, we demonstrate the ability of SeedMatchR to detect cumulative changes in differential gene expression attributed to siRNA seed region activity. AVAILABILITY SeedMatchR is available on CRAN. Documentation and example workflows are available through the SeedMatchR GitHub page at https://github.com/tacazares/SeedMatchR.
Collapse
Affiliation(s)
- Tareian Cazares
- Genetic Medicine, Eli Lilly and Company, Indianapolis, IN 46225, United States
| | - Richard E Higgs
- Genetic Medicine, Eli Lilly and Company, Indianapolis, IN 46225, United States
| | - Jibo Wang
- Genetic Medicine, Eli Lilly and Company, Indianapolis, IN 46225, United States
| | - Hatice Gulcin Ozer
- Genetic Medicine, Eli Lilly and Company, Indianapolis, IN 46225, United States
| |
Collapse
|
8
|
Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim C, Yeh JY. Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci 2023; 30:88. [PMID: 37845731 PMCID: PMC10577957 DOI: 10.1186/s12929-023-00981-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
RNA has emerged as a revolutionary and important tool in the battle against emerging infectious diseases, with roles extending beyond its applications in vaccines, in which it is used in the response to the COVID-19 pandemic. Since their development in the 1990s, RNA interference (RNAi) therapeutics have demonstrated potential in reducing the expression of disease-associated genes. Nucleic acid-based therapeutics, including RNAi therapies, that degrade viral genomes and rapidly adapt to viral mutations, have emerged as alternative treatments. RNAi is a robust technique frequently employed to selectively suppress gene expression in a sequence-specific manner. The swift adaptability of nucleic acid-based therapeutics such as RNAi therapies endows them with a significant advantage over other antiviral medications. For example, small interfering RNAs (siRNAs) are produced on the basis of sequence complementarity to target and degrade viral RNA, a novel approach to combat viral infections. The precision of siRNAs in targeting and degrading viral RNA has led to the development of siRNA-based treatments for diverse diseases. However, despite the promising therapeutic benefits of siRNAs, several problems, including impaired long-term protein expression, siRNA instability, off-target effects, immunological responses, and drug resistance, have been considerable obstacles to the use of siRNA-based antiviral therapies. This review provides an encompassing summary of the siRNA-based therapeutic approaches against viruses while also addressing the obstacles that need to be overcome for their effective application. Furthermore, we present potential solutions to mitigate major challenges.
Collapse
Affiliation(s)
- Hara Kang
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Yun Ji Ga
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Soo Hyun Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Young Hoon Cho
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung Won Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Chaeyeon Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung-Yong Yeh
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Research Institute for New Drug Development, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- KU Center for Animal Blood Medical Science, College of Veterinary Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, South Korea.
| |
Collapse
|
9
|
Lee M. Machine learning for small interfering RNAs: a concise review of recent developments. Front Genet 2023; 14:1226336. [PMID: 37519887 PMCID: PMC10372481 DOI: 10.3389/fgene.2023.1226336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
The advent of machine learning and its subsequent integration into small interfering RNA (siRNA) research heralds a new epoch in the field of RNA interference (RNAi). This review emphasizes the urgency and relevance of assimilating the plethora of contributions and advancements in this domain, particularly focusing on the period of 2019-2023. Given the rapid progression of deep learning technologies, our synthesis of recent research is paramount to staying apprised of the state-of-the-art methods being utilized. It not only offers a comprehensive insight into the confluence of machine learning and siRNA but also serves as a beacon, guiding future explorations in this intersectional research field. Our rigorous examination of studies promises a discerning perspective on the contemporary landscape of machine learning applications in siRNA design and function. This review is an effort to foster further discourse and propel academic inquiry in this multifaceted domain.
Collapse
|
10
|
Wu BC, Hsu ATW, Abadchi SN, Johnson CR, Bengali S, Lay F, Melinosky K, Shao C, Chang KH, Born LJ, Abraham J, Evans D, Ha JS, Harmon JW. Potential Role of Silencing Ribonucleic Acid for Esophageal Cancer Treatment. J Surg Res 2022; 278:433-444. [PMID: 35667884 DOI: 10.1016/j.jss.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Esophageal cancer is an aggressive malignancy with high mortality. Optimal treatment of esophageal cancer remains an elusive goal. Ribonucleic acid (RNA) interference is a novel potential targeted approach to treat esophageal cancer. Targeting oncogenes that can alter critical cellular functions with silencing RNA molecules is a promising approach. The silencing of specific oncogenes in esophageal cancer cells in the experimental setting has been shown to decrease the expression of oncogenic proteins. This has resulted in cell apoptosis, reduction in cell proliferation, reduced invasion, migration, epithelial-mesenchymal transition, decrease in tumor angiogenesis and metastasis, and overcoming drug resistance. The Hedgehog (Hh) signaling pathway has been shown to be involved in esophageal adenocarcinoma formation in a reflux animal model. In addition to Hh, we will focus on other targets with clinical potential in the treatment of esophageal cancer. MATERIALS AND METHODS We searched for articles published from 2005 to August 2020 that studied the siRNA effects on inhibiting esophageal cancer formation in experimental settings. We used combinations of the following terms for searching: "esophageal cancer," "RNA interference," "small interfering RNA," "siRNA," "silencing RNA," "Smoothened (Smo)," "Gli," "Bcl-2," "Bcl-XL," "Bcl-W,″ "Mcl-1," "Bfl-1," "STAT3,"and "Hypoxia inducible factor (HIF)". A total of 21 relevant articles were found. RESULTS AND CONCLUSIONS Several proto-oncogenes/oncogenes including Hh pathway mediators, glioma-associated oncogene homolog 1 (Gli-1), Smoothened (Smo), and antiapoptotic Bcl-2 have potential as targets for silencing RNA in the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Bo-Chang Wu
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angela Ting-Wei Hsu
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanaz Nourmohammadi Abadchi
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher R Johnson
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; Division of Thoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sameer Bengali
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Frank Lay
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kelsey Melinosky
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Kai-Hua Chang
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Louis J Born
- Department of Bioengineering, University of Maryland, College Park, College Park, Maryland
| | - John Abraham
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Jinny S Ha
- Division of Thoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John W Harmon
- Bayview Surgical Research Laboratory, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|